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1.1

M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

C H A P T E R  0 1

M E A S U R E M E N T
Physics, like the other sciences, is all about explaining the natural world. Measurement is at
its very heart. Ever since humans have been thinking about their place in the universe, they
have been making measurements. Have you ever wondered about any of these:
• What would have been the first sort of measurement made by humans?
• When you use the unit of length, foot, whose foot was the standard?
• What is the shortest length of time that can exist? Is there no limit?
• Time passes but why can’t it go backwards?
• Just how heavy is the universe? How did they weigh it?
• Is cream more dense than milk and, anyway, who invented density?
Questions like these have always intrigued people. As you study physics some of them will
become clearer. But hopefully you will ask your own questions and make your own measure-
ments, for this is what the study of physics is all about.

A c t i v i t y  1 . 1 E S T I M AT I N G
1 Estimate the length of this page to the nearest millimetre. Now measure it.

Were you over or under?

2 Now that you’ve had practice, estimate the length of this line:

Were you any more accurate?

3 How far is it from the floor to the ceiling? Write down your estimate and then
find the actual value.

4 Can you estimate 30 seconds? Look at your watch, cover it and uncover it when
you think 30 seconds is up. Repeat it until you are accurate to within 1 second.
How did you count off the seconds? How did others in the class count off the
seconds?

5 How good are you at estimating mass? Estimate the mass of this book in grams
without lifting it and then again after lifting it. Did you lift it up and down to
estimate mass? Why?

6 Feel the thickness of one page of this book. How many pages do you estimate
this book has? Check.

2 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

N O V E L  C H A L L E N G E

The four compass directions
North, East, South, West 
are derived from old foreign
words. Can you match up the
original meanings with the 
compass directions:
A Indoeuropean wes = Sun 

goes ‘down’.
B Italian nerto = ‘to the left’ 

as one faces the Sun.
C German suntha = region in

which the ‘Sun’ appears in 
the Northern Hemisphere.

D Indoeuropean aus = Sun ‘rises’.

N O V E L  C H A L L E N G E

Here are a few ‘Fermi’ questions
(named after US physicist Enrico
Fermi, who used to drive his
students nuts with them).
A How quickly does hair grow?
B How many piano tuners are

there in your capital city?
C How many ping-pong balls

can you fit in a suitcase?
D How quickly does grass grow?
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1.2

Estimating measurements is important. You can see whether answers are reasonable or
nonsense if you have a feeling for some of the common units of measurement in physics. The
three quantities you’ve measured in the activity are the most basic measurements in physics:
length, time and mass. But your estimates probably differed from others in your class 
and that’s why standards were developed. The importance of measurement grew as human
societies became more complex.

The first measurement the earliest humans are believed to have used was the ‘day’. Hence,
the ‘day’ became the first unit of measurement, well before any concept of length or mass.
Which unit do you think came next? Perhaps the ‘month’ — from one new moon or full moon
to the next; and then perhaps the ‘year’ when people noticed that the Sun rose again in the
same constellation of stars after many new moons.

Neanderthal burial sites from 50 000 years ago suggest that people were conscious of the
past, the present and the future — something that most other animals are believed to be
unaware of.

As humans have progressed, so too has their need for new units of measurement. The
need for a unit comes before a unit is invented. Only recently have units like the barn been
invented. The size of a nucleus as seen by a high speed atomic particle is as big as the side
of a barn, hence the name. One barn equals 10–28 m2. There was no need for this unit until
Einstein produced the ‘theory of relativity’ and physicists applied it to atomic structure.

P H Y S I C A L  Q U A N T I T I E S
There are a number of things in the world we want to measure. As well as the three mentioned
above (length, time and mass), there are others, such as temperature, electric current 
and weight. These measurable features are called physical quantities. There are also some
non-physical quantities, for example intelligence, beauty and personality, that are difficult-
to-measure. Attempts have been made to devise measurements for quantities such as these
but have always ended up in disagreement and, in many cases, failure.

The international system of units called SI (from the French name for the system,
Système International d’Unités), is now commonly used around the world. It is sometimes
called the metric system (from the Greek metron to ‘measure’).

The seven fundamental (or base) units of this system are shown in Table 1.1.

Ta b l e  1 . 1  S I  U N I T S

To get multiples of the base units, prefixes are added. Table 1.2 lists some of these 
prefixes that will be used throughout your physics course. You should remember from nano to
mega. Check with your teacher if you need any others.

3M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

Length l metre m
Mass m kilogram kg
Time t second s
Electric current I ampere A
Temperature T kelvin K
Amount of substance n mole mol
Luminous intensity candela cd

PHYSICAL QUANTITY SYMBOL OF QUANTITY NAME OF UNIT SYMBOL FOR UNIT

N O V E L  C H A L L E N G E

If you were transported in a time

machine to an unknown date in

Australian history, how could you

work out the date? See our Web

page for some suggestions.
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A
B

C

F

D
EA fathom

B yard
C cubit

D span
E palm
F digit

Ta b l e  1 . 2  P R E F I X E S

Example of using a prefix with a unit: 1 millimetre = 10–3 metre = 0.001 metre.
Rarely used prefixes are:
• 10–15 femto (f) — radius of a proton is 1 fm
• 10–21 zepto (z) — charge on the electron is 160 zC
• 10–24 yocto (y) — mass of the hydrogen atom is 1.66 yg
• 10–27 xenno (x) — magnetic moment of a proton is 14 xJ T–1

• 1021 zetta (Z) — distance to Andromeda galaxy is 20 Zm
• 1024 yotta (Y) — mass of the Earth is 5977 Yg.
Others you’d never use are vendeko (v) 10–33 and vendeka (V) 1033. Can you think of any prac-
tical use of these prefixes? Mathematicians also use the term googol to represent 10100 and
googolplex for 10 raised to the power of a googol: 1010100. The biggest number in the world
(apart from infinity) is Grahams’ number. If all the material in the world was turned into paper
there still wouldn’t be enough paper to write it down. Now that’s big!

— Standards
Standards have to be agreed upon for units to be useful throughout the world. For instance,
the temperatures in different countries couldn’t be compared until a universal temperature
scale was devised. The following shows how some of these units have developed.

4 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

PREFIX SYMBOL MEANING VALUE FACTOR
Pico p one million-millionth 0.000 000 000 001 10–12

Nano n one thousand-millionth 0.000 000 001 10–9

Micro µ one millionth 0.000 001 10–6

Milli m one thousandth 0.001 10–3

Centi c one hundredth 0.01 10–2

Deci d one tenth 0.1 10–1

Kilo k one thousand 1 000 103

Mega M one million 1 000 000 106

Giga G one thousand million 1 000 000 000 109

Tera T one million million 1 000 000 000 000 1012

N O V E L  C H A L L E N G E

You have two 100-page volumes
of a dictionary on your shelf. 
A worm eats its way from 
Volume 1 page 1 through to
Volume 2 page 100. 
How many pages does it eat
through?

V
O
L

2

V
O
L

1

Figure 1.1
Body measurements.
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— Length
As with most early units, people used the most convenient measures — themselves. The
length of a foot or a stride was a convenient measure. So was the span of a hand or the 
thickness of a thumb. But as civilisations grew, these ways of measuring became inadequate.
How could a foot be used as a measure when one person’s foot was so much longer than
another’s? Hands and thumbs were different too. In ancient times a measure that was used
in one country was often later adopted by others through trade or invasion. Roman measures
spread throughout Europe, Asia, England and Africa as the Romans conquered and occupied
these lands but gradually, through mistakes in copying and figuring, the standards became so
confused that most of them dropped out of use. By the sixteenth century most people in
Europe had returned to the old body measurements and we still use some of these today.

The shortest unit of length was the digit, the width of a finger, or three-quarters of an
inch. An inch is the width of a thumb; a hand is four inches and the span is nine inches. 
To try to standardise these units, Edward II of England ruled that one inch ‘shall be equal to
three grains of barley, dry and round, placed end to end lengthwise’.

The foot was about 11.5 inches in Greece, 12 inches in England and other English speak-
ing countries, and 11 to 14 inches anywhere else. The earliest attempt to standardise the foot
was in 2100 BC when it was decreed that a foot was the length of the foot of the statue of the
ruler of Gudea of Lagash in Babylonia. It was 10.41 inches long and divided into 16 parts.

The pace was another common measure. It was about 5 feet — the length of two com-
plete steps. Roman soldiers paced off the miles as they marched. A thousand paces made up
a mile, just a little less than the modern mile, which is 5280 feet. Now we measure a pace as
a single step — about 2.5 feet.

Lastly, the yard. The yard was defined in two ways: in northern Europe it was the length
of an Anglo-Saxon’s belt whereas in the south it was a double cubit. A cubit is 18 inches —
the distance from the elbow to the wrist. Henry I, at the beginning of the twelfth century,
fixed the yard as the distance from his nose to the thumb of his outstretched arm.

The metric system (SI) was invented by the French in 1790, following the French
Revolution. It was a part of a plan for a new beginning, a whole new social and economic life
in France, without any ties to the past. The metre, the basic unit of length, was supposed to
be one ten-millionth part of the distance from the North Pole to the Equator. But in the 
eighteenth century instruments were not as accurate as they are today, so there was a 
measurement error. By the time the error was realised, the metre was so well established at
39.37 inches that it was left at that.

A platinum–iridium bar exactly this distance long was made and this became the 
standard for the metre. In 1960 the standard metre was redefined to be the length equal to 
1 650 763.73 wavelengths in a vacuum of the red-orange light emitted by the krypton-86
atom. Since 1983, however, the metre has been redefined as the length of the path travelled
by light in a vacuum during a time interval of 1/299 792 458 of a second.

Ta b l e  1 . 3  S O M E  L E N G T H S

— Time
The first way of measuring time was to keep a record of the repetition of natural events. From
sunrise to sunrise was the most fundamental of periods as it was so easy to measure and
hence the day became the first unit of time. We do not know how long ago people started
using the idea of days but it would certainly have been tens of thousands of years ago.

5M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

N O V E L  C H A L L E N G E

Consider the Earth to have a 
circumference of 40 000 km and 

a ribbon to be put tightly around
it. If you cut the ribbon and

inserted a 30 cm piece, how far
would the ribbon be from the
earth if it was evenly spaced?

tight ribbon

N O V E L  C H A L L E N G E

Quick now — is a physics lesson
longer or shorter than a 

microcentury?

To furthest quasar 1026 Thickness of a page 10–4

To nearest star 1016 Radius of H atom 10–10

To Pluto 1013 Radius of a proton 10–15

Radius of Earth 107

LENGTH METRES LENGTH METRES

ribbon + 30 cm

?
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People realised that the Sun and the Moon were the best timekeepers of all. They called
the time taken for the Earth to make one orbit of the Sun a year. We now know it to be 365
days, 5 hours, 48 minutes and 45.7 seconds long. The extra hours, minutes and seconds are
collected together every 4 years to make the additional day we have in a leap year. To keep
the timing more accurate, the start of a century is classified as a non-leap year.

The length of a day is fixed by the Earth’s rotation on its axis. But at different times of
the year the length of the day varies from place to place so we have to take this into account.
What we end up with is the mean solar day but its duration is now standardised in terms of
the hour, minute and second.

It was the ancient Babylonians who divided their measurements into sixty parts and we
have kept their divisions for the hour and minute. A minute is 60 seconds and an hour is 60
minutes. The fundamental unit, the second, is now defined as the time for 9 192 631 770
vibrations of light (of a specified frequency) emitted by a caesium-133 atom. In principle,
two caesium clocks would have to run for 6000 years before they differed by 1 second. In
practice, atomic clocks do better than that. The latest Hewlett Packard 5071A caesium clock
achieves an accuracy of 1 second in 1.6 million years and only costs about $90 000. Some
experimental clocks are within 1 second in 30 billion years. Every physics lab should have one.

But a fundamental question about time has always bothered physicists. What does the
passage of time mean? What is the difference between the past and the future apart from the
passage of time? Nobel prize-winning physicist Richard Feynman said, ‘We physicists work
with time every day but don’t ask me what it is. It’s just too difficult to think about’.

Ta b l e  1 . 4  S O M E  T I M E  I N T E R VA L S

— Mass
Measurements of mass and weight came a long time after measurements of length and time.
An early way of thinking about weight was the amount a person could carry. At first, people
compared weight by balancing small objects, one in each hand, and estimating whether one
was heavier than another. About 7000 years ago, the Egyptians devised a crude scale — a
stick hanging by a cord tied around its middle acting as a balance. By 3000 BC small stone
weights were used as a comparison, but as trade developed, different weights were used for
different objects. Honey, medicine and metal all had different units of weight, many of which
have persisted into modern times. For example, the avoirdupois system of weights includes
ounces, pounds and the ton. Grain was measured in bushels; liquids were measured in pints
and gallons or in the case of oil, in barrels. But no mention in early history has been made of
the quantity known as mass.

Mass and weight are different quantities but people use them as if they mean the same
thing. In Chapter 4 you will see the difference. Mass is a measure of an object’s resistance to
motion when being pushed or pulled. A 1 kilogram mass will be just as hard to push around
no matter where in the universe it is. Weight, on the other hand, is a measure of the force of
gravity acting on an object and will vary depending on how strong gravity is in that place.
But weight has always been the quantity people have associated with heaviness; after all,

6 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

Lifetime of a proton 1039

Age of the universe 1018

Age of the pyramid at Cheops 1011

Human life expectancy 109

Length of a day 105

Physics lesson 104

Lifetime of a muon 10–6

Shortest time interval known* 10–43

TIME INTERVAL SECONDS

* This is known as Planck time — the earliest time after
the ‘Big Bang’ at which the laws of physics as we know
them can be applied.

N O V E L  C H A L L E N G E

In the first paragraph of Charles
Dickens’ The Pickwick Papers
he states that he was at the
bottom of a deep well and could
see the stars in the daytime.
Aristotle made the same claim 
in On the Generation of Animals
in 350 BC.
Is this possible? Propose points
for and against this idea. See the
Web page for an answer.

P H Y S I C S  U P D AT E

The Time Service Department, US
Naval Observatory, Washington,
DC provides time signals for use
throughout the USA and other
parts of the world. You can access
their clock on the Internet at
http://tycho.usno.navy.mil/what.
html and even set your 
computer’s clock against their
master signal.

N O V E L  C H A L L E N G E

The world is broken up into many
time zones based on the
longitude of the various regions.
Queensland is 1/2 hour ahead of
South Australia, for instance.
But what time zone is the South
Pole? No emailing Casey Station
to find out.

P H Y S I C S  FA C T

The word ‘hour’ comes from the
Greek word meaning ‘season’. 
The length of daylight depends
on the season. The word ‘day’
comes from the Saxon word ‘to
burn’, referring to the hot days 
of summer.
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gravity is fairly constant all over the world and it hasn’t been until the twentieth century that
humans have left the Earth to go into space. More importantly though, the concept of mass
was not developed until the 1680s when English scientist Isaac Newton proposed a relation-
ship between force and acceleration that profoundly affected the new science of mechanics.
This idea will be developed further in Chapter 4.

Mass is a fundamental quantity and the kilogram has been adopted as the fundamental
unit of mass in the SI or metric system. The standard kilogram is a platinum–iridium cylinder
kept at the International Bureau of Weights and Measures near Paris. Accurate copies have
been sent to other standardising laboratories in other countries and the masses of other 
bodies can be determined by balancing them against a copy.

Ta b l e  1 . 5  S O M E  M A S S E S

A c t i v i t y  1 . 2 B I G G E S T,  L O N G E S T  A N D  O L D E S T
Use the Guinness Book of Records, the Internet or an encyclopaedia to find out the 
following facts about units of measurement:

1 The highest artificial temperature on Earth was in a fusion reactor in the USA in
1994. How hot did it get?

2 How long can people go without food or water? Has anyone made it past 
18 days?

3 What are the masses of the heaviest man and woman ever recorded? How many
times greater than that of the lightest person are they?

4 Gold is the most ductile element known — it can be drawn into a very fine wire.
How many metres of wire can be produced from 1 g of gold?

— Derived uni ts
New quantities can be made up of the base quantities. These are called derived quantities.
For example, you can have combinations of the base units, such as metres per second and
cubic metres or you can have derived quantities that have been given specific names, such as
newton, coulomb and watt.

7M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

Universe 1053

Our galaxy 1041

Sun 1030

Moon 1023

Ocean liner 108

Human 102

Grape 10–3

Speck of dust 10–9

Penicillin molecule 10–17

Uranium atom 10–26

Proton 10–27

Electron 10–30

Neutrino 10–30

Uranium atom 10–26

OBJECT KILOGRAMS

Photo 1.1
The standard kilogram.

N O V E L  C H A L L E N G E

Under the system of measurement

adopted during the reign of 

Queen Elizabeth I:

1 mouthful = 1 cubic inch

1 handful = 2 mouthfuls

1 jack = 2 handfuls

1 gill = 2 jacks

1 cup = 2 gills

1 pint = 2 cups

1 quart = 2 pints

If 1 cubic inch = 14.7 mL, how

many cups to 1 litre?

N O V E L  C H A L L E N G E

This book is printed on paper
classified as 80 gsm (80 grams
per square metre). The cover is

made of 249 gsm paper. 
What should the mass of this

book be? Check it and see. 
What went wrong?
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Table 1.6 lists some derived quantities.

Ta b l e  1 . 6  S O M E  D E R I V E D  Q U A N T I T I E S

A c t i v i t y  1 . 3 W O R K I N G  S C I E N T I F I C A L LY
Physicists spend their professional lives investigating relationships between physical
quantities. In 1665 Robert Hooke described the relationship between the length of a
spring and the stress (force) applied to it. Currently, physicists are trying to work out
how the fundamental forces of nature are related to each other. In the three activities
that follow, you will set up some experiments, collect data and look for relationships
between some of the physical quantities mentioned earlier.

Part A: The bent ruler
1 Clamp a 30 cm steel ruler to the edge of a bench leaving most of it overhanging.

Measure the distance from the floor to the tip of the ruler. (See Figure 1.2.)

2 Add a 50 g mass to the tip and record how many centimetres the ruler has bent
from its unladen position. This is called its displacement.

3 Add another 50 g mass and record the total displacement. Then another 50 g and
so on until 300 g has been added.

4 Plot a graph of displacement (y-axis) versus mass added (x-axis).
(a) Does the graph go through the origin (0, 0)? If so, why?
(b) How many centimetres does the ruler bend per 100 g added? Express this as

cm per g.
(c) Show how the graph would look if you: (i) used a thicker ruler; (ii) used a

wider ruler; (iii) used a plastic ruler; (iv) allowed only 20 cm to overhang; 
(v) used a frozen ruler; (vi) used a steel ruler rapidly heated and cooled
(annealed); (vii) used a steel ruler heated and cooled slowly. Try it! For all
graphs you should provide a theoretical justification of your prediction.

8 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

DERIVED QUANTITY UNIT SYMBOL FOR UNIT

bench

clamp

steel ruler

displacement

brass
masses

Figure 1.2
The bent ruler set-up for Part A.

Acceleration metre per second2 m s–2

Angle radian rad
Area metre2 m2

Capacitance farad F
Density kilogram per metre3 kg m–3

Electric charge coulomb C
Energy joule J
Force newton N
Frequency hertz Hz
Momentum kilogram-metre per second kg m s–1

Potential difference volt V
Power watt W
Pressure pascal Pa
Resistance ohm Ω
Velocity metre per second m s–1

Volume metre3 m3

P H Y S I C S  FA C T

On his fourth voyage to the
New World, Spanish explorer
Christopher Columbus was
marooned in Jamaica and, after a
while, the local Indians refused
to provide food. He knew that
there would be an eclipse at
noon on 29 February 1504 so he
summoned the chiefs aboard and
told them that unless they gave
him food God would blacken the
sky. When they refused, the sky
went black right on time and
when they relented he ‘made’ the
sky go back to normal. Then the
Spanish began the systematic
plunder and destruction of an
entire civilisation. Ah, no wonder
science gets a bad name.

N O V E L  C H A L L E N G E

German researcher Günther
Bäumler found that people with
the surname Smith (Schmidt in
German) had, on average, a body
mass that was 2.4 kg greater
than people with the name 
Taylor (Schneider). 
How would you test his findings
in your school? What other
variables would affect your
results? Check our web page for
why this difference occurs.
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Part B: Magnetic personality
The force between two magnets varies with separation distance.

1 Place a bar magnet vertically upright on the pan of an electronic balance. 
(See Figure 1.3.) Zero the balance.

2 Place another magnet in a clamp above the first magnet so that the unlike poles
face each other. There will be an attractive force, so the scale reading on the 
balance should be a negative value.

3 Start with the end of the clamped magnet 50 cm from the magnet on the 
balance and record a reading. If it is not zero, start with a 1 m separation (hold
it in your hand).

4 Reduce the separation distance (d ) by 5 cm at a time (or less if you like) and
take balance readings.

5 Plot the data with separation distance (in cm) on the x-axis, and scale reading
(grams) on the y-axis. If you are keen, convert the separation distance to
metres; and convert the scale reading to force in newtons (N) by dividing it 
by 1000 and multiplying by 9.8.

6 Some questions:
(a) When the distance was halved (from 50 cm to 25 cm), by what factor did

the scale reading increase?
(b) Would you get the same results if you put the magnets into repulsion?

7 Now try plotting 1/d2 on the x-axis against the scale readings. Did something
magical occur?

Part C: Let him swing!
Three variables you could change about a pendulum are the length, the mass and the 
distance through which it swings. (See Figure 1.4.) Using a lead fishing sinker or a brass
mass tied to a metre of fishing line, construct a pendulum and measure the time for one
swing at six different lengths. Keep the mass constant. Plot a graph. Keep your data for
Chapter 3.

— Convert ing uni ts
It is often important to convert from one unit to another: for instance, from millimetres to
metres or from pounds to kilograms. Two types of conversions are involved:
• From one SI unit to another.
• From a non-SI unit to an SI unit.
The first type will be needed when data are given in one particular unit but the answer has
to be given in another form. This might occur when some constant is involved that is in 
a unit different from that of the data given. For example, if you had to calculate how far 
you would travel in 10 minutes at a speed of 5 metres per second then you would convert 
10 minutes to seconds (10 × 60 = 600) and multiply this number of seconds by the speed
(600 × 5 = 3000 metres).

Example
Imagine you have made measurements of a block of wood in a density experiment and need
to calculate its volume in cubic metres. Length 35 cm, breadth 2.0 cm, width 1.5 cm.

9M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

Electronic
balance

S

N

N

S

Figure 1.3
Set-up for measuring the relationship
between magnetic force and distance

(Activity 1.3, Part B).

support

length (L)

bob

1 swing

Figure 1.4
Characteristics of a pendulum.
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1.3

Step 1: Convert the measurements to SI units (metre):
• length = 35 cm = 35 × 1 × 10–2 m = 0.35 m (3.5 × 10–1 m)
• breadth = 2.0 cm = 2.0 × 1 × 10–2 m = 2.0 × 10–2 m
• width = 1.5 cm = 1.5 × 1 × 10–2 m = 1.5 × 10–2 m.

Step 2: Calculate the volume:
• volume = 0.35 m × 2 × 10–2 m × 1.5 × 10–2 m

= 1.05 m × 10–4 m3.
Some other simple examples are:

• 25 000 cm= 250 m (2.5 × 102 m)
• 23 km = 23 000 m or 2.3 × 104 m
• 6 hours = 21 600 s or 2.16 × 104 s.

The other type of conversion is from a non-SI unit to an SI unit. This could occur, for
instance, when data come from another source such as from some domestic measurement;
from another country or from data taken in the past. The United States has yet to adopt SI
units for daily use although all science, engineering and medical units throughout the world
have been changed to SI. For instance, you may have to convert the mass of a person from
pounds to kilograms. The conversion factor is 1 kg = 2.204 622 341 pounds. (See Table 1.7.)

Ta b l e  1 . 7  S O M E  N O N - S I  C O N V E R S I O N  FA C T O R S

— Q u e s t i o n s
1 From the following, select (a) two fundamental quantities; (b) two fundamental

units; (c) two non-SI units: yard, luminous intensity, ampere, year, minute, 
temperature, force, second, pressure.

2 Convert the speed of light (3 × 108 m s–1) to (a) km h–1; (b) miles per hour.
3 Convert the following: (a) 10.3 m to cm; (b) 1.25 cm to m; (c) 1120 cm to m;

(d) 143 367 mm to m; (e) 1.8 mm to m; (f) 14 cm2 to m2; (g) 4.8 cm3 to m3.
4 (a) Japanese sumo wrestlers have to be a minimum of 5 feet 8 inches tall. 

How many centimetres is this? (1 foot = 12 inches and 1 inch = 2.54 cm.)
(b) The heaviest baby ever born was 23 lb 10 oz. If there are 16 ounces (oz) in 
1 pound (lb) and 1 pound equals 0.454 kg, convert the baby’s mass to kg.

S C I E N T I F I C  N O TAT I O N
Things in the world are not always human-sized. Some are very small; some are huge. The
numbers used to express these measurements can get messy. For example, the time taken for
light to travel from one side of an atom to the other is about one billion billion billion 
billionths of a second. The mass of the Sun is two thousand billion billion billion kilograms.
In his book A Brief History of Time, Stephen Hawking mentions that the publisher told him
not to use any numerals. All numbers had to be spelt out because, it was argued, people

10 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

NON-SI  UNIT SI  UNIT
Inch (in) 2.54 centimetres
Yard (yd) 0.914 401 8 metre
Gallon (gal) 4.546 litres
Pound mass (lb) 0.453 592 37 kilogram
Pound weight (lb) 4.45 newtons
Mile (mi) 1.609 kilometres
Acre (ac) 0.404 687 hectare
Pound per square inch (psi) 6896 pascals
Horsepower (Hp) 746 watts

N O V E L  C H A L L E N G E

In his 1997 book Number Sense,
Stanislas Dehaene reported that
his tests on brilliant scientists in
France showed that it took them
longer to say whether 6 was
greater than 5 than it did to say
whether 9 was greater than 5.
Propose a testable hypothesis
that could be investigated.

N O V E L  C H A L L E N G E

People shrink in height not only
as they get older, but also during
each day. Some of our students
shrink by 1 cm between first
and last lesson. What is the
reason for this? Can you find
factual support for your
suggestion? Do you think taller
people shrink more than shorter
ones? Does everyone shrink by a
certain percentage? Do younger
and older people shrink by the
same percentage?

1
2

P H Y S I C S  FA C T

A very old unit of length was
cubit—the length of the arm
from elbow to fingertips. It
comes from the Latin cubitum,
meaning ‘elbow’. The Egyptian
‘royal cubit’ was 542 mm long,
and a master cubit of black
granite was kept in a royal vault.
All the cubit sticks in use in
Egypt were measured at regular
intervals. For example, the Great
Pyramid of Giza was 280 royal
cubits (RC) high. Other cubits
include the biblical cubit of 
457.2 mm.
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couldn’t understand exponents and wouldn’t buy a book with them in. So, the speed of light
appears as three hundred million metres per second.The time after the ‘Big Bang’ that it took
for electrons to be created was a thousand billion billion billion billion billionths of a second.
You probably know of a simpler way of expressing these values.

A shorthand means of expressing such numbers is called exponential notation. For
example:
• 1 million (1 000 000) is written as 106.
• 1 billion (1 000 000 000) is written as 109.
• 1 millionth (1/1 000 000 or 0.000 001) is written as 10–6.
• 1 billionth (1/1 000 000 000 or 0.000 000 001) is written as 10–9.

Exponents tell us how many times 10 must be multiplied together and hence give the
number of zeros. The expression 103 means 10 multiplied by itself three times (10 × 10 × 10);
in other words, 1 with three zeros following it (1000).

When writing numbers using exponents, it is common practice to use scientific notation.
This involves the following conventions:
• Write numbers in exponential notation with just one numeral before the decimal

point, that is, the Earth–Moon distance of 382 million kilometres could be expressed
as 382 × 106 km or in scientific notation as 3.82 × 108 km.

• Leave numbers between 0.1 and 100 as they are. There is no need to express 60 
seconds as 6.0 × 101 s although you should be guided by your teacher on this matter.

Example
Write the following in scientific notation:

(a) The speed of light — three hundred million metres per second.
(b) The diameter of a red blood cell — 2 millionths of a metre (0.000 002 m).

Solution
(a) Three hundred million is 300 × 106 so the speed of light can be written as 

3.00 × 108 m s–1.
(b) 0.000 002 is written as 2.0 × 10–6.
As you can see, with scientific notation only one numeral appears before the decimal

place. The exponent has to be adjusted to allow for this. For example, when the number 
300 × 106 became 3.00 × 108, the decimal point in 300 was shifted two places to the left
(made smaller) to become 3.00, so to compensate, the exponent has to be increased by two
units from 106 to 108 (made bigger).

Negative exponents are used to indicate numbers less than unity. For example, an elec-
tron has a mass of 0.000 549 units. To make this 5.49, we have to shift the decimal point 
four places to the right (made bigger by 10 000), so an exponent has to be included that
compensates for this. In scientific notation it would be 5.49 × 10–4 units.

Further examples
(a) The radius of the Earth is 696 million metres or 6.96 × 108 m.
(b) The diameter of Saturn is 120 thousand kilometres or 1.20 × 105 km.
(c) The diameter of an atom is 0.000 000 000 1 m or 1.0 × 10–10 m.
Care must be taken when entering numbers in exponential notation in a calculator. On a

‘scientific’ calculator, to enter the number 6.96 × 108, press the buttons 6.96 EXP 8. The dis-
play should read 6.9608. A common error is to enter this as 6.96 × 10 EXP 8. This is wrong.
The display would read 6.9607, which means 6.96 × 107. To enter an exponent such as 104 by
itself you have to imagine that it means 1 × 104 and enter it as such. Remember, the EXP but-
ton symbolises the base, which is 10. It is one of the most common mistakes students make
and a sure cause of lost marks in tests. When entering negative exponents, the +/– button is
pressed after the exponent. A graphing calculator is different, but the problem is the same.

In some computer languages, exponents can be written in a different form. A number
such as 6.96 × 107 would be written as 6.96E7 where the E stands for ‘exponent’. With an
exponent of 10–7 this would be written as 6.96E–7.

11M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

N O V E L  C H A L L E N G E

Humans have 1014 cells at a
diameter of 0.01 mm each. 

If they were placed in a line, 
how many times around the

Earth would they go? (The radius
of the Earth is 6.38 x 106 m.)

N O V E L  C H A L L E N G E

A brochure for the 1963 Ford
Falcon said it averaged 26 miles

per gallon of petrol. A 2002
Falcon is reported to use 12 L of

petrol per 100 km.
(a) Which is the more

economical?
(b) Develop a formula to 
convert mpg to L/100 km.

(c) In 1963, the standard Falcon
engine had a capacity of 

170 cubic inches, whereas the
2002 Falcon has a 4.5 litre

engine. Which is the bigger?
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1.4

— Q u e s t i o n s
5 (a) Which is the larger out of (i) ‘one hundred thousandths of a second’ 

and (ii) ‘one one hundred thousandth of a second’? (b) How can you make it
clear whether you are talking about s or s when you are expressing
these numbers in words? (c) Write both numbers in scientific notation.

6 Write the following in scientific notation: (a) 0.000 552; (b) 73 000 000; 
(c) one and a half million; (d) 0.000 250.

7 Work out the following on your calculator: (a) 1.2 × 10–3 × 2.2 × 10–4; 
(b) 1.8 × 103 ÷ (6.4 × 10–8).

8 Calculate the volume of an atom of diameter 0.000 000 001 m.

S I G N I F I C A N T  F I G U R E S
When you say that it’s 100 metres to the shop you are not really saying that this is the 
distance to the nearest metre. You are being approximate. You have not measured it — it
could be 80 m or it could be 150 m. But the distance between the start and finish of a 
100 m sprint race has to be 100 m and this has to be to the nearest centimetre. How would
you write these distances? They are both 100 m.

It is common practice in science to record all integers that are certain and one more in
which there is some uncertainty. The integers known with certainty plus the next figure are
called significant figures (sf). Imagine you used a metre ruler marked in centimetres and
measured the width of a book as 30.4 cm. This number has three significant figures. The first
two integers are measured with certainty whereas the third is a mental estimate. The number
could also be written as 0.304 m. It still has three significant figures — the first zero is only
there to emphasise the location of the decimal point. Imagine you used the same ruler and
measured the thickness of a book to be 6.3 cm. There are two significant figures — the 
.3 cm part is only a best guess, a mental estimate. In metres, this would be written as 
0.063 m. There are still only two significant figures — the two zeros only indicate the
position of the decimal point and are not significant.

Consider a ruler marked in millimetre divisions as your own ruler probably is. If you drew
a line of length 10 mm, you would be drawing a line somewhere between about 9.5 mm and
10.5 mm in length — you probably can’t be more accurate than that. In this case, the 1 is
significant whereas the 0 is the next uncertain digit. There are two significant figures. But
should it be written as 0.01 m or 0.010 m? You should write it as 0.010 m to show that the
zero following the 1 is significant but the first two zeros only indicate the decimal point.

If exactly 35 000 tickets to a football grand final were sold then there are five significant
figures. This is an exact figure, accurate to the last ticket, so all zeros are significant. In
scientific notation it would be written as 3.5000 × 104 tickets. If a crowd commentator 
estimated the crowd size as ‘thirty-five thousand’ then the figure is probably an estimate to
the nearest thousand. It might be written in the paper as 35 000 but there are only two signi-
ficant figures — the three zeros are not significant but are there to indicate where the 
decimal point is located. In scientific notation this would be written as 3.5 × 104 people.
Sometimes significant zeros are indicated with a small bar above the numeral. The exact 
figure of 35 00

-
0 people has a bar above the final zero whereas the commentator’s estimate

doesn’t. If the crowd was estimated to the nearest hundred it could be written as 35
-
000,

which indicates three significant figures. In scientific notation this would be written as 
3.50 × 104. This is a better way to specify significant figures.

— Rules
• All non-zero figures are significant: 3.18 has three sf.
• All zeros between non-zeros are significant: 30.08 has four sf.
• Zeros to the right of a non-zero figure but to the left of the decimal point are not

significant (unless specified with a bar): 109 000 has three sf.

1
100 000

100
1000

12 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

N O V E L  C H A L L E N G E

Famous biologist Charles Darwin

described the size of a canary

finch in one of his notebooks 

as 3 inches long. 

Why didn’t he just write 3 inches?
Convert the original measurement
to centimetres using the correct
number of significant figures.

1
2

32
64

N O V E L  C H A L L E N G E

In the English translation of a
manual on violin playing by the
great Hungarian–German teacher
Carl Flesch, budding violinists
were told to ‘lift your fingers
0.3937 inches from the 
fingerboard’. 
Why is this funny? What do you
suppose the original measurement
was? Rewrite the inches
measurement with the correct
number of significant figures.

N O V E L  C H A L L E N G E

In a shop in North Walsham,
Norfolk, the height restriction 
to its carpark is written as 
2300 mm.
Is there anything wrong with
this? Explain!
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• Zeros to the right of a decimal point but to the left of a non-zero figure are not
significant: in 0.050, only the last zero is significant; the first zero merely calls
attention to the decimal point.

• Zeros to the right of the decimal point and following a non-zero figure are significant:
304.50 has five sf.
Some examples of the application of these rules are given in Table 1.8.

Ta b l e  1 . 8  E X A M P L E S

Note: normally, numbers between 0.1 and 100 are not written in exponential form but are
shown here for clarity.

— Mult iply ing and div iding
A problem arises when performing calculations using significant figures. Imagine you had 
to calculate the surface area of a road going through a sensitive koala habitat. The traffic
engineers said the road easement would be 95.5 m wide and 26 km long. When multiplying
95.5 × 26 000, the answer of 2 483 000 must show the correct number of significant figures.
The rule is: when multiplying or dividing, the answer should contain only as many significant
figures as that number involved in the operation that has the least number of significant 
figures. In this case, 95.5 m has three significant figures and 26 000 m has two. The answer
should only have two, so it should be written as 2 500 000 m2 or 2.5 × 106 m2. That’s a lot of
bush.

Other examples are:
• 45.71 × 34.1 = 1558.711. This is rounded to 1560 or 1.56 × 103, which has three

significant figures (3 sf).
• 365 ÷ 2.4 = 152.083 333 3. This is rounded to 150 or 1.5 × 102 (2 sf).
Rounding-off If you need to round-off you can use this rule: numerals lower than 5 round-
off to zero; numbers larger than 5 round-off to 10; when the number to be rounded off is 5
take it up to 10 if the number preceding is even, otherwise take it down to zero. For example:
when 16.586 is rounded off to four significant figures it becomes 16.59. When 24.65 is 
rounded to three significant figures it becomes 24.7 as the 6 is even and hence the 5 is
rounded up to 10.

— Addit ion and subtract ion
If a 1575 g target is struck with a 2.55 g bullet, which becomes embedded in it, the mass of
the target is now 1575 g + 2.55 g = 1577.55 g. Or is it? The final mass has more significant
figures than either the target’s mass or the bullet’s mass. Intuitively this should sound wrong.
The final mass should be written as 1578 g. The rule is: calculations are rounded off to the
least significant decimal place value in the data.

Examples
(a) 264.68 – 2.4711 = 262.2089 = 262.21.
(b) 2.345 + 3.56 = 5.905 = 5.90.

13M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

NUMBER NUMBER OF SIGNIFICANT FIGURES SCIENTIFIC NOTATION

0.003 5 2 3.5 × 10–3

0.003 50 3 3.50 × 10–3

0.35 2 3.5 × 10–1

3.5 2 3.5 (× 100)
3.50 3 3.50 (× 100)
35 2 3.5 × 101

350 2 3.5 × 102

3500.003 5 8 3.500 003 5 × 103

N O V E L  C H A L L E N G E

At a dinosaur exhibit at 
the Queensland Museum, the

attendant said the
Muttaburrasaurus was 30 million
and 20 years old. ‘How can you

be that accurate?’ asked a
student. ‘Well I was told it was 

30 million years old when I
started work here and I’ve been

here 20 years.’
How would you explain to the

attendant the folly of his
statement?

N O V E L  C H A L L E N G E

On the side of ‘Tesco’ lemonade
cans it reads: 8 kJ per 100 mL, 

17 kJ per 200 mL.
How can this be?

N O V E L  C H A L L E N G E

The statement ‘19 is about 
20’ is reasonable. 

Why then can’t you say 20 is 
almost 19? Explain.

N O V E L  C H A L L E N G E

The rate at which hydrogen 
is consumed on the Sun is

proportional to the temperature
(in kelvins) raised to the power
of 20 (rate ∝ T 20). How much

faster is the rate at 6000 K 
than it would be at 5000 K?
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1.5

— Q u e s t i o n s
9 State the number of significant figures in each of the following: (a) 83.83;

(b) 20.0; (c) 5; (d) 22 050; (e) 100; (f) 100.010; (g) 1999; (h) 2.222 2; 
(i) 40 000; (j) 0.050 70; (k) 0.000 000 200.

10 For the numbers in Question 9 above, write them out in scientific notation and use
the correct number of significant figures.

11 How many significant figures are there in the following: (a) 4.6 × 103; 
(b) 1.00 × 105; (c) 6.07 × 10–6; (d) 3.300 × 10–10?

12 Calculate the following and express in scientific notation to the correct number 
of significant figures: (a) 12.3 m × 34.14 m; (b) 3.5 × 102 m × 2.18 × 104 m; 
(c) 180 cm ÷ 2.5 s; (d) 1.18 cm × 3.1416 cm; (e) 2.0 × 10–3 m × 2.0 × 10–4 m.

13 Work out the following: (a) 5.2 m + 16.013 m + 24.37 m; 
(b) 2.125 m + 11.473 2 m + 9.0124 m; (c) 3.0 × 103 m + 3.0 × 104 m; 
(d) 4.0 × 10–3 cm + 5.0 × 10–2 cm; (e) 1.118 × 104 m + 2.34 × 106 m; 
(f) 8.7 × 10–5 m + 3.5 × 10–2 m.

14 Calculate (2.34 kg + 1.118 kg) ÷ (1.05 cm × 22.2 cm × 0.9 cm).
15 A sheet of copper was measured as part of a density experiment. The dimensions

were: length 55.5 cm, breadth 2.0 cm, thickness 0.02 cm. Calculate (a) the area of
the largest surface; (b) the volume; (c) the perimeter of the largest face.

O R D E R  O F  M A G N I T U D E
When dealing with very large or very small numbers we are often only interested in an 
approximate figure. For example, the remotest object known is the quasar RDJ030117 located
at a distance of 2.8 × 1022 km from Earth. It is just as meaningful to say it is 1022 km away.
This is said to be its order of magnitude (OM). Similarly, the mass of a hydrogen atom is 
1.67 × 10–27 kg, so its order of magnitude is 10–27. The order of magnitude is the power of 10
closest to the number. However, when converting a number to its nearest 10, the rule is:
numerals greater than 3.16 become 10 and those below 3.16 become zero. The reason for this
is that 100.5 = 3.16.

Ta b l e  1 . 9  O R D E R  O F  M A G N I T U D E

Calculations When estimating the order of magnitude of a mathematical calculation, it is
convenient to convert each number to its order of magnitude first.

Example
Determine the order of magnitude of this calculation: (3.0 × 1010) × (8.4 × 106).

Solution
• 3.0 × 1010 has an OM of 1010; 8.4 × 106 has an OM of 107.
• 1010 × 107 equals 1017.

Note: the full answer is 2.52 × 1017, which does have an OM of 1017.

14 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

Distance to Andromeda galaxy 1.9 × 1022 m 1022 m
Distance to nearest star 4.0 × 1016 m 1017 m
Diameter of Earth 1.3 × 107 m 107 m
Thickness of a credit card 5.0 × 10–4 m 10–3 m
Thickness of a hair 2.8 × 10–5 m 10–5 m

MEASUREMENT DIMENSION ORDER OF MAGNITUDE

Photo 1.2
Correcting zero error on an ammeter.

Ch01-Walding 4th  25/8/04  9:19 AM  Page 14



1.6

— Q u e s t i o n s
16 What is the order of magnitude of each of the following: (a) 1.8 × 1022; 

(b) 3.9 × 1012; (c) 2.6 × 10–10; (d) 5.8 × 10–15; (e) 175 000; (f) 66 000; 
(g) 0.000 002; (h) 0.000 65?

17 Estimate the order of magnitude of the answer for each of the following 
calculations: (a) (6.2 × 1020) × (3.8 × 10–18); (b) (600) × (10 × 108);
(c) 5.4 × 10–12 ÷ 3.1 × 10–15.

MAKING AND RECORDING MEASUREMENTS
If you had to count the number of desks in your classroom you would get an exact figure but
if you had to measure the width of a desk with a metre ruler your measurement would be an
approximation, probably to the nearest millimetre. Measurements, unlike numbers, can never
be exact because they all have some amount of error or uncertainty.

You can end up with errors in a measurement because of the limitations of the measur-
ing instrument or the conditions under which it was made. Such errors are not mistakes
because they are not someone’s fault. Some examples of errors include:
• zero error, for example the pointer or the end of a ruler not on the zero mark to start

with (See Figure 1.5.)
• calibration error, for example a stopwatch that runs fast or slow, a thermometer badly

graduated, or a metal ruler that has expanded in the heat
• parallax error, for example reading a clock at an angle so that the hand appears to be

over another number, reading a thermometer at an angle
• reaction time, for example the delay in starting a stopwatch.

These errors can be classified into two main types:
• systematic errors in which all of the readings are faulty in one direction and can be

usually corrected for by a simple calculation or improved experimental technique
(Zero errors and calibration errors are of this type.)

• random errors, which are irregular errors of observation. Parallax error is an 
example.
Mistakes are not errors in this context. If you misread a scale (Figure 1.7) by 

miscalculating the value of each division, this is sometimes called a ‘scale reading error’ but
is really just a mistake.

15M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

1.0 cm 1.15 cm

(a) incorrect

0

2
4 6

8

10

VOLTAGE
V

Figure 1.5
Zero error. This voltmeter has a zero error
of 0.4 volt. It can be zeroed by adjusting

it with a screwdriver (see Photo 1.2).

Figure 1.6
(a) A parallax error will occur

because there is a gap between 
the scale and the object being 

measured. (b) There is no parallax
error as the scale and object 

are touching.

30

20

10

Figure 1.7
Scale division error on a thermometer.

The reading on this thermometer is
28°C not 24°C. Each scale division is

2°C not 1°C as may be thought.

1 2

1.0 cm 1.0 cm
(b) correct

Photo 1.4
If you did this you would have a

zero error of 4 mm.

Photo 1.3a
From directly above the reading 
is 23.35 mm.

Photo 1.3b
From an angle there is parallax error
and the reading is now 23.85 mm.
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A c t i v i t y  1 . 4 PA R A L L A X  E R R O R
Hold your arm outstretched in front of you with your thumb pointing up. With one eye
closed, line your thumb up with some mark on a wall in front of you. Close that eye and
open the other and note how many centimetres your thumb has shifted to the side of the
mark. Which eye was the more dominant? What are some ways of controlling parallax
error?

— Scale reading l imitat ions
Students generally read scales to the nearest mark or division. For example, the reading on
the ruler shown in Figure 1.8 would generally be stated as 36 mm but it really looks closer to
36.5 mm than to 36.0 mm. A better reading would be 36.5 mm.

Some people would claim to be able to read to the nearest 0.1 mm but this seems overly
accurate for the type of scale used. A good rule is that scales should be read to the nearest
half of a scale division. Rulers can be read to the nearest half-millimetre and laboratory
thermometers to the nearest 0.5°C. An ammeter like the one shown in Figure 1.9 is best read
to the nearest 0.05 A.

— Uncertainty
You can’t measure a physical quantity exactly because all instruments have limitations. These
limitations make any reading uncertain. However, some digital instruments appear to give
more exact measurements than the manufacturers ever intended. For example, an ammeter
with a display of 258 mA seems to be indicating that the current is exactly 258 mA, whereas
it may really mean 258 ± 1 mA.

A general rule-of-thumb is that the uncertainty in a reading is said to be equal to a half
scale division on the instrument. For a ruler marked in millimetres, the absolute uncertainty
is ± 0.5 mm so the reading above could have been stated as 36.5 ± 0.5 mm. This absolute
uncertainty could be also expressed as a percentage uncertainty:

The uncertainty is a way of expressing how confident you are about the readings provided by
the instrument. It is a measure of the limitations of the instrument.

16 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

absolute uncertainty
Percentage uncertainty = × 100%

observed measurement

0.5
= × 100% = 1%.

36.5

20 30 40 50m

Figure 1.8
This ruler can be read to the nearest
0.5 mm.

0
1

2 3
4

5

pointer

A

scale

Figure 1.9
The ammeter scale has 0.1 A divisions,
so it can be read to the nearest 0.05 A
(half of 0.1).

Photo 1.5a
A ruler calibrated in 1 mm divisions can be
read to the nearest 0.5 mm. In this case
the reading is 135.5 mm.

Photo 1.5b
If the ruler was calibrated in 1 cm divisions,
then you could read to the nearest 0.5 cm
—in this case 17.5 (175 mm).
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U n c e r t a i n t y  c a l c u l a t i o n s
To add, subtract, multiply or divide numbers, the absolute and relative uncertainties may be
required.
• For addition and subtraction, add absolute uncertainties.
• For multiplication and division, add percentage uncertainties.

Example 1
A container of water rises in temperature from 25.5 ± 0.5°C to 36.0 ± 0.5°C. Calculate the
rise in temperature and its percentage uncertainty.

Solution

Example 2
A piece of paper is measured and found to be 5.63 ± 0.05 mm wide and 64.2 ± 0.5 mm long.
What is the area of the piece of paper?

Solution

— Q u e s t i o n s
18 A cube of brass was measured and found to have a side of length 13.0 ± 0.5 mm.

Determine the volume of the cube.
19 A student made two measurements using a metre ruler calibrated in millimetres.

First measurement = 25.5 mm.
Second measurement = 174.5 mm.
(a) What are the absolute uncertainties for these measurements?
(b)Convert these absolute uncertainties to relative uncertainties.
(c) Add the two measurements and show the absolute uncertainty of the result.
(d)Multiply the two measurements and show the absolute uncertainty of the 

result.
20 Determine the correct value for the area of a horse paddock 645 ± 5 m long 

and 345 ± 5 m wide. What is the total length of fencing needed to fence this
paddock?

— Accuracy and precision
Students often find that despite performing an experiment as accurately as possible and 
reading the instruments as best as they are able, their results are different from the accepted
or textbook result. This difference is called the error. The error is a measure of the accuracy
of a result. Accuracy refers to the closeness of a measurement to the accepted value. 

17M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

36.0 ± 0.5°C – 25.5 ± 0.5°C  =  10.5 ± 1.0°C

1.0
= × 100% = 9.5%.

10.5

Area = length × width
= (5.63 ± 0.05 mm) × (64.2 ± 0.5 mm)
= 5.63 ± 0.89% × (64.2 ± 0.78%) (convert to percentage uncertainty)
= 361.446 ± 1.67% (add percentage uncertainties)
= 361.446 ± 6.025 mm2 (convert percentage uncertainty to absolute uncertainty)
= 361 ± 6 mm2

(Round answer to three significant figures and round the uncertainty to one 
significant figure as given in the original data.)

10

11

12

Figure 1.10
This burette shows a reading of

11.55 mL. One half-scale 
division equals 0.05 mL.
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Imagine your group measured the density of water to be 1.02 g/mL when the accepted value
was given as 1.00 g/mL at that temperature. Your (absolute) error would be 0.02 g/mL.

Hence:
• The absolute error (Ea) = | observed value – accepted value | = |O – A|.
Note: the straight lines (|) in the above equation mean the ‘absolute value’, that is, the sign
(+/–) of the answer is ignored.
• The relative error (Er) is the absolute error expressed as a percentage of the 

accepted value (A):

0.02In the above example Er, would equal         × 100%  =  2%.1.00
This is necessary so that accuracy between different experiments can be compared. Imagine
that a student measured the density of lead as 11.29 g/cm3, while the accepted value was
11.41 g/cm3. Which result is the more accurate — the density of water or the density of lead?
In this case you need to compare relative errors: the error for water was 2% whereas that for
lead was 1% and hence was more accurately measured.

Example 1
Calculate (a) the absolute error and (b) the relative error in a student’s measurement of 
the acceleration due to gravity. They obtained 9.73 m/s2 whereas the accepted value at their
location was 9.813 m/s2.

Solution
(a) Ea = |O – A|

= 9.73 – 9.813
= 0.08 m/s2 (to the correct number of significant figures).

(b) Er = Ea × 100%
A

= 0.08  × 100%
9.813

= 0.8%.

Example 2
When lower profile tyres are fitted to a car in place of the factory fitted ones, a speedometer
reading error can occur as the new tyres have a smaller diameter. A table was compiled by a
motor magazine during a road test (Table 1.10).

Ta b l e  1 . 1 0  

Calculate the relative error at 80 km/h.

Solution

18 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

Observed 60 80 100 110
Actual 57.0 76.0 95.0 104.5

SPEED (km/h)

Ea 4
Relative error = —  × 100%  =  —  × 100  =  5.2%

A 76

Relative error (Er) = Ea x 100%
A
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1.7

A c t i v i t y  1 . 5 E R R O R  I N  E S T I M AT I N G  P I  ( π)

1 Draw a line on a piece of paper and place a starting mark at one end 
(Figure 1.11).

2 Make a mark on the side of a 20 cent coin at the edge.

3 Line up the two marks and roll the 20 cent coin along the line until the mark on
the coin touches the paper again, and then put a finish mark.

4 Measure the diameter, d, of the coin with whatever instrument you choose.
Measure the length of the line between the start and finish marks. This is the
circumference, c, of the coin.

5 Calculate π by using the formula c = πd (i.e. 2πr).

6 Knowing that π = 3.141 59, calculate the absolute and relative errors in your
estimate of pi.

Summing up:
• Uncertainty is a measure of how confidently you can state a measurement or result

and is a direct result of the limitations of an instrument. The terms absolute 
uncertainty and relative uncertainty are used.

• Accuracy is a measure of how close a measurement is to an accepted value. The terms
absolute error and relative error are used.

— Q u e s t i o n s
21 Convert the following percentage errors back to absolute errors: (a) 27.6 ± 1.5%; 

(b) 10.35 ± 0.6%.
22 Calculate the relative error for the following speeds (as shown in Table 1.10): 

(a) 60 km/h; (b) 100 km/h; (c) 110 km/h. Does the speedo become more 
inaccurate at higher speeds?

23 A carbon resistor of nominal resistance 330 ohms is manufactured to a tolerance
of 5%. This is, in effect, the maximum relative error. Calculate the range of 
resistance that this resistor could be.

M E A S U R I N G  I N S T R U M E N T S
Just as units of measurement changed as people’s needs changed, so too did the instruments
they used for measuring things. Ancient societies achieved incredible accuracy with their
primitive devices — rods, string and even line-of-sight. But as precision engineering became
vital to industrial society, instruments were developed to achieve such precision.

In this section we will look at the:
• micrometer screw gauge
• vernier calliper
• stroboscope
• digital counter.

19M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

roll

start finish

Figure 1.11
Experiment to calculate errors

in estimating pi.

P H Y S I C S  FA C T

In 1783 William Shanks reported
a value of pi to 707 places,

beating the previous value by 200
places. In 1949 a computer was

used for the first time to
calculate pi mechanically and

they found that Shanks made a
mistake at the 528th digit and

was wrong from then on. Shanks
took 15 years to make his

calculation—and he was wrong.
What a waste!
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— The micrometer screw gauge
To measure really tiny things a micrometer can be used. It can measure down to about one-
hundredth of a millimetre. The principle behind the micrometer is the screw — one rotation
of the screw moves it through a distance equal to the pitch (the distance from one thread to
the next) as shown in Figure 1.12. If the screw is rotated only a fraction of a turn, then the
screw advances that fraction of the pitch.

A common type of laboratory micrometer has a main scale marked off in half-millimetre
divisions. One revolution of the thimble moves the main shaft 0.5 mm. The thimble itself is
divided into 50 divisions so that 1 mm equals 100 thimble scale divisions. Hence 1 thimble
scale division = 1/100 mm or 0.01 mm. The micrometer in Figure 1.13 shows a reading of 
6.5 mm on the main scale and 27 × 0.01 (= 0.27 mm) on the thimble scale. The final reading
is thus 6.77 mm.

There are many types of micrometers available. Your school’s could be quite different from
the one described here.

A c t i v i t y  1 . 6  T H E  V E R N I E R  C A L I P E R
Try the following as a good stimulus response task. 

The vernier caliper has two jaws that slide together over the object being measured. The
caliper was named after the French mathematician Pierre Vernier, who devised the scale. It
uses an auxiliary scale (the vernier scale) in conjunction with a main scale to assist in esti-
mating fractions of a main scale division. The main scale is graduated in millimetres (called
main scale divisions or MSD) and each centimetre is numbered. The vernier scale is 
9 mm long and yet is divided into ten equal divisions (called vernier scale divisions or VSD).
It can be shown that the smallest possible division on the vernier scale is one-tenth of 
1 mm = 0.1 mm. The procedure is: count the number of complete main scale divisions (MSD)
up to the zero line on the vernier scale. Count the number of vernier scale divisions (VSD) to
the point where a vernier scale mark and a main scale mark coincide. This will be in 0.1 mm
units. For example, in Figure 1.14, the object is 11 mm long plus 5 × 0.1 mm, which equals
11.5 mm or 1.15 cm.

20 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

Photo 1.6
Digital vernier calipers are now
becoming more commonplace 
especially as their price has come 
down to about $100.

Figure 1.13
This micrometer reads 6.5 mm on the
main scale and 0.27 mm on the barrel,
making a total of 6.77 mm.

Figure 1.14
This vernier calliper reads
(1.1 + 5 × 0.01) cm, i.e. 1.15 cm.

the 5th mark on the vernier scale
matches up with a main-scale mark

0
5

10
length of object

main scale

vernier scale

0 1 2

35
30

25
20

0 5

pitch = 1 mm

Figure 1.12
The pitch of this micrometer 
is 1 mm.
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— Q u e s t i o n
24 What is the reading on the vernier calipers shown in Figure 1.15?

T h e  s t r o b o s c o p e
The stroboscope owes its name to the Greek strobos meaning ‘to whirl around’ and skopion
meaning ‘see’. The most common form consists of a xenon flash tube similar to that found in
a camera flash (Photo 1.8). It can be made to flash at a variable rate from about 1 per 
second to tens of thousands per second. If a rotating object is in fairly dim conditions and
the light flashes when the object is in the same position every time then the object will
appear stationary. However, you wouldn’t know if the object rotated two or three or a 
hundred times between flashes so you have to make sure by starting at the lowest strobe 
frequency and gradually increasing it until motion ‘freezes’.

One problem with strobe illumination is that by freezing a rotating object (e.g. a fan blade
or a part of a lathe) onlookers may be confused into thinking it is stationary and this would
of course be very dangerous. In factories, special precautions are taken with machinery 
that is illuminated by fluorescent lights. Fluorescent lights flicker at 100 times per second or
100 hertz — once for each crest and trough of an alternating current. Machinery operating
at multiple frequencies of this could appear stationary. Such lights have different capacitors
added to make them flicker out of synchronisation, which breaks up the strobe effect.

T h e  d i g i t a l  c o u n t e r
The term ‘digital’ conjures up images of modern high-technology but in reality it just means
counting in units. This could be like counting ‘yes’ and ‘no’ votes in an election; like ‘present’
and ‘not present’ when marking a class roll; ‘off’ and ‘on’ for an electrical switch or ‘light’ and
‘dark’ as cans of soft drink pass a light sensor on a packaging line.

21M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

5
10

15
20

25
mm

5 10

vernier scale

main scale

6 8 9 10
cm

(a) (b)Figure 1.15
For question 24.

Photo 1.8
A xenon stroboscope.

Photo 1.7
A mechanic using a timing light.

(J.A.T. Mechanical, Brisbane)
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1.8 A  F I N A L  N O T E
There is one final caution about measurement and measuring instruments that applies to all
devices mentioned throughout this book. An ideal measuring device will have no effect on 
the measurement itself. For instance, when you measure the width of your desk, the desk is
unaffected by the measurement. But this is not the case for all measuring devices. When you
measure the pressure of a car’s tyres some gas is sampled and the tyre has less gas than
before you started. The loss is insignificant, however. A voltmeter or ammeter samples
electrons from an electrical circuit and will affect the voltages and currents being measured.
But again, if the meters are used properly the effect will be minimal. Can you think of other
instruments that affect the phenomena being measured and how the effect is minimised?

— P r a c t i c e  q u e s t i o n s
The relative difficulty of these questions is indicated by the number of stars beside each 
question number:  * = low; ** = medium; *** = high.

Review — applying principles and problem solving
*25 The space shuttle orbits the Earth at an altitude of 300 km. How many 

millimetres is this?
*26 The Earth is approximately a sphere of radius 6.37 × 106 m. (a) What is its

circumference? (b) What is its volume in cubic metres? (c) What is its volume 
in cubic kilometres?

*27 Submarines typically dive at a rate of 36 fathoms per second. If a fathom is 
6 feet and 1 foot is 0.305 m, convert this diving speed to metres per second.

*28 Write the following in scientific notation: (a) 3 558.76; (b) 40.00; (c) 79 000;
(d) 200 326; (e) 1994; (f) 20.009; (g) 0.050 0; (h) 2 500 000; (i) 0.000 000 8; 
(j) 5 million.

*29 Do the following calculations on your calculator, using the correct number of
significant figures: (a) 4.2 × 103 × 8.1 × 104; (b) 3.7 × 107 × 4.1 × 10–4; 
(c) 7.2 × 104 ÷ 1.8 × 106; (d) 4.8 × 106 ÷ 1.6 × 10–3; (e) π (4.1 × 10–6)2; 
(f) 2.8 × 103 ÷ ( π (4.7 × 10–5)3).

*30 Express each of the following as an order of magnitude: (a) 4.28 × 107; 
(b) 32 000 000; (c) 1.2 × 105; (d) 1.13 × 10–4; (e) 4.5 × 10–8; (f) 9 192 000; 
(g) 0.000 000 38.

*31 How many significant figures are there in each of the following: (a) 95.2 km;
(b) 3.080 × 105 g; (c) 0.0067 L; (d) 0.000 670 L?

*32 Convert the following to relative errors: (a) 2.40 ± 0.02 V; (b) 3.25 ± 0.05 A; 
(c) 25.4 ± 0.4 mm; (d) 0.0035 ± 0.0001 T; (e) 325 ± 10 cm.

**33 A student is required to determine the density of a particular metal. The object
is in the shape of a cylinder. She uses a micrometer calibrated in 0.01 mm (i.e. a
limit of reading of 0.01 mm) to measure the diameter of the cylinder and uses a
vernier calliper with a limit of reading of 0.1 mm to measure the length. Recall
that the error associated with a reading is half the limit of reading. The results
are shown in Table 1.11.

4
3
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Ta b l e  1 . 1 1  

(a) What absolute error is associated with each reading?
(b) Determine the average values for length and diameter.
(c) Determine the value for radius and length. Include the correct error.
(d) Determine the volume of the cylinder, including its error.
(e) If the cylinder has a mass of 56.4 ± 0.2 g, determine the density of the 

cylinder in g mm–3.
*34 Use your ruler and calculate (a) the surface area of the front cover of this book;

(b) the total external surface area; (c) the volume of this book;
(d) the thickness of one page.

Extension — Complex, challenging and novel
**35 What does the prefix ‘micro’ signify in the words ‘microwave oven’? Does it mean

it is a small oven? It has been proposed that food that has been irradiated by
gamma rays to lengthen its shelf life should be called ‘picowaved’. What do you
suppose that means?

***36 Convert the speed of light (3.0 × 108 m s–1) to furlongs per fortnight. A furlong
is one-eighth of a mile; there are 5280 feet in a mile and one foot is 0.305 m.

***37 A wire of length 756.5 ± 0.5 mm has a mass of 8.5 ± 0.5 g. Calculate the mass
per millimetre.

***38 Isaac Asimov proposed a unit of time based on the highest known speed of 
light and the smallest measurable distance. It is the light-fermi, the time taken
by light to travel a distance of 1 fermi (= 1 femtometre = 1 fm = 10–15 m). 
How many light-fermis are there in 1 second? Recall that light travels at 
3 × 108 m s–1.

**39 Some of the prefixes of the SI units have crept into everyday language. What is
the weekly equivalent of an annual salary of $36 K (= 36 kilodollars)?

***40 The hard disk of a particular computer was stated as 200 MB (= 200 megabytes).
At 8 bytes per word, how many words can it store? Note that in computerese,
kilo means 1024 (= 210) not 1000 and mega means 220 not 1 million.

**41 When the length of a metre was defined in 1983, the speed of light was accepted
as 2 997 924 58 ms–1. Why was it not defined as exactly 3.000 × 108 m s–1 to
make it simpler?

***42 The following is an extract from The Times newspaper, London. Read it and
answer the question below.

Time, gentlemen

The Gregorian calendar, which celebrated its quatercentenary in October 1982, is
still working well. So well, in fact, that it will be some time in AD 4316 before it 
is a complete day out.

The trouble is that when God created, he did so without benefit of digital
timekeeping, and a year is currently 365.2422 days long. This leaves a rather 
useless plane-shaving of time at the end of each year. Julius Caesar was without
digitals, too, but his astronomer Sosigenes did a remarkably fair job in 46 BC to
produce a year of 365 days and six hours — only a week out every 1000 years.
This was perfectly adequate for the ancients, who rose and retired by the sun, but
not for those pernickety Christians, who became deeply concerned about Easter
being on the correct day.

23M e a s u r e m e n t  a n d  P h y s i c a l  Q u a n t i t i e s

1 16.446 28.4
2 16.444 28.3
3 16.442 28.5

READING DIAMETER (mm) LENGTH (mm)
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By the time Pope Gregory XIII wrestled with the problem, the Julian calendar
was 10 days adrift. So at midnight on October 5, 1582, he declared the next day to
be October 15. It brought the vernal equinox in the northern hemisphere back to
March 21 and the peasants never felt a thing.

Britain, having long grown wary of such popish tricks, did not deign to accept
the Gregorian calendar until 1752. But it was by no means the last country to
abandon old Caesar’s almanac. Russia did not go Gregorian until 1918, after the
Revolution, and the last country of all to abandon it seems to have been Greece,
in 1923.

(a) Why did the Christians need a more accurate calendar?
(b) Russian chemist Mendeléev devised the Periodic Table of the Elements on

1 March 1901 in Moscow. What date would this have been in London?
(c) By 1989 the calendar was only out by 2 hours 49 minutes since 1582. 

How far out will it be in 2005?

***43 The size of a molecule can be determined by placing a drop of oil on the surface
of water and noting the maximum area of the oil slick which is assumed to be
one molecule thick. We tried this and found that one drop spread to a circle 
with a diameter of 14 cm. We also found that there were 20 drops of oil to the
milliliter. Calculate the thickness of the slick.

***44 There are 6 × 1023 molecules of water in 18 mL of water. If the ocean has a 
volume of 1.3 × 1018 m3, how many glasses of water (at 250 mL each) are there
in the ocean? Comment on the assertion that ‘there are more molecules of water
in a glass of water than there are glasses of water in the ocean’.

***45 Neutron stars have a radius of 20 km and a mass equal to our Sun (2 × 1030 kg).
What is the mass of a cubic centimeter of neutron star?
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