QCAA PHYSICS EXTERNAL ASSESSMENT 2021

ALTERNATIVE SEQUENCE

Worked solutions and explanations to Alternative Sequence Paper 1 Multiple choice

- from Dr Richard Walding, author New Century Physics for Queensland (OUP)

Note: I have included worked solutions and explanations to the multiple choice questions to other QCAA Physics EA papers on my website at seniorphysics.com/ncpq. See the bottom of that page for links.

Option	Solutions and explanations (validity statements and distractor justification)
1	Leptons do not experience the...etc
A	Incorrect. Leptons such as electrons and neutrinos do experience the weak force such as in beta decay.
*B	Correct. Quarks, but not leptons, experience the strong (nuclear) force. Even charged leptons such as electrons and positrons do not experience the strong nuclear force. Note that 'strong force' in the question is not a syllabus term and represents the syllabus term 'strong nuclear force'. But we know what QCAA meant.
C	Incorrect. Objects with mass experience the gravitational force, and leptons do have mass. Even neutrinos are NOT massless.
D	Incorrect. Electrically charged particles experience the electromagnetic force, and leptons such as electrons, positrons and muons are electrically charged. However, not all leptons are electrically charged - such as neutrinos - and they will not experience the electromagnetic force.
2	Calculate the initial horizontal velocity....etc
A	Incorrect: $38 \times \sin 42^{\circ}=25 \mathrm{~m} \mathrm{~s}^{-1}$
*B	Correct: $38 \times \cos 42^{\circ}=28 \mathrm{~m} \mathrm{~s}^{-1}$
C	Incorrect: $42 \times \cos 38^{\circ}=33 \mathrm{~m} \mathrm{~s}^{-1}\left(\approx 34 \mathrm{~m} \mathrm{~s}^{-1}\right)$
D	Incorrect: has calculated the average of the two values $(38+42) / 2=40$ without any reason.
3	Identify the correct formula for the mass-energy...etc
*A	Correct. This is equivalent to the formula in the Formula Book and syllabus $\Delta E=\Delta m c^{2}$ where E or ΔE represent the change in energy, and m or Δm represent the equivalent change in mass.
B	Incorrect. This is the gravitational potential energy formula which relates the energy of an object of mass m at a position h in a gravitational field of strength g.
C	Incorrect. This formula incorrectly uses the non-relativistic kinetic energy formula $E=$ $1 / 2 m v^{2}$ to an object travelling at the speed of light where $v=c$, hence $E=1 / 2 m c^{2}$, without taking into account relativistic effects.
D	Incorrect. This is the kinetic energy formula $E_{\mathrm{k}}=1 / 2 m v^{2}$ which relates the kinetic energy of an object of mass m travelling at a speed v. It only applies at non-relativistic speeds.
4	What is the final velocity of a 5 kg ...etc
A	Incorrect. Calculated time of flight but had faulty rearrangement of second formula.

	$\begin{aligned} v & =u+a t \\ & =0+\frac{1}{2} \times 9.8 \times 1.8 \\ & =9 \mathrm{~ms}^{-1} \end{aligned}$
B	Incorrect. Faulty rearrangement of the formula. $\begin{aligned} s & =u t+\frac{1}{2} a t^{2} \\ v & =\left(\frac{2 s}{a}\right)^{2} \\ & =\left(\frac{2 \times 16}{9.8}\right)^{2} \\ & =11 \mathrm{~ms}^{-1} \end{aligned}$
C	Incorrect. Faulty substitution into formula. $\begin{aligned} v^{2} & =u^{2}+2 a s \\ v & =\sqrt{0+9.8 \times 16} \\ & =13 \mathrm{~ms}^{-1} \end{aligned}$
*D	Correct. $\begin{aligned} v^{2} & =u^{2}+2 a s \\ v & =\sqrt{0+2 \times 9.8 \times 16} \\ & =18 \mathrm{~ms}^{-1} \end{aligned}$
5	Mesons are ...etc
*A	Correct. Mesons are subatomic (but not elementary as they can be further subdivided into smaller particles: quarks and antiquarks). Only quarks and leptons are considered elementary. Mesons are composed of two particles only: a quark and an antiquark. By the way: the quark and antiquark don't have to be the same flavour, eg up and antiup.
B	Incorrect. They are not elementary as they are a composite of two elementary particles (quark and antiquark). It is true that they are subatomic as they are smaller than an atom.
C	Incorrect. They are not elementary as they are a composite of two elementary particles (quark and antiquark). The particle exchanged between quarks is the gluon, not a meson. However, the gluon is also exchanged between mesons.
D	Incorrect. It is true that mesons are subatomic, but they are composed of two particles a quark and an anti-quark. A composite particle composed of three quarks, such as a proton or a neutron, is known as a baryon. However, a meson and a baryon are different, but both belong to the group known as hadrons because they are quark composites.
6	The mass defect is the difference...etc
A	Incorrect. The mass of a proton is slightly heavier than a neutron but the difference is not called mass defect. It is to do with the extra energy needed to keep the proton together compared to a neutron.
B	Incorrect. It is true to say the mass of a parent nucleus is different to the mass of the daughter nucleus after radioactive decay, but this is not 'mass defect'. It is similar to mass defect but is just the mass carried off by the emitted particles and the mass equivalence of energy released.

D	Incorrect. Used \cos in vertical and \sin in horizonal. Angle correctly calculated for these wrong vectors.
9	Alpha radiation is defined as...
A	Incorrect. It is release of energy from an unstable nucleus but not in the form of electromagnetic radiation (gamma rays) but in the form of discrete particles.
B	Incorrect. The radiation emitted from a blackbody is in the form of electromagnetic radiation or photons. See NCPQ U3\&4 p305.
C	Incorrect. This is the property for electromagnetic radiation. See NCPQ U1\&2 p 114, or U3\& 4 p 231 and p 302.
*D	Correct. See NCPQ U1\&2 p 166.
10	Proper length is the length measured...etc
*A	Correct. Proper length is the length as measured by an observer at rest to the object being measured.
B	Incorrect. If the object appears to be moving to an observer, that observer will measure dilated (or relativistic) length but will also agree that the observer moving with the object will measure proper length.
C	Incorrect. The term 'accelerating' implies that an object is in motion, and thus measurement of the length of the object by an observer who sees the object accelerating will not be the proper length. You could also argue that Special Relativity applies only to objects moving at constant velocity relative to one another, and so the idea of proper length is not covered by the theory.
D	Incorrect. If the object appears to be moving to an observer, that observer will measure dilated (or relativistic) length - irrespective of whether the object is at constant velocity or is accelerating.
11	Uniform circular motion occurs...etc
A	Incorrect. The force has to be perpendicular not parallel. The first part 'constant speed, due to a force of constant magnitude', however, is correct.
B	Incorrect. The force has to be perpendicular not parallel, and has to refer to velocity (which is a vector so has a direction) and not speed (which is a scalar and has no direction).
*C	Correct. Must have a constant speed (not velocity) because its direction of motion is always changing so the velocity is changing. Also, the force must be perpendicular to the direction of the velocity vector.
D	Incorrect. The answer has to refer to velocity (which is a vector so has a direction) and not to speed (which is a scalar and has no direction).
12	Calculate the maximum height...etc
*A	Correct. The initial velocity of the projectile in the vertical direction is: $\begin{aligned} u_{y} & =u \sin \theta \\ & =15 \sin 30^{\circ} \\ & =7.5 \mathrm{~ms}^{-2} \end{aligned}$ At the top of it's flight the projectile has zero velocity $\left(v_{y}=0 \mathrm{~m} \mathrm{~s}^{-1}\right)$

	$\begin{aligned} v_{y}{ }^{2} & =u_{y}{ }^{2}+2 g s_{y} \\ 0 & =7.5^{2}+2 \times(-9.8) \times s_{y} \\ s_{y} & =\frac{-56.25}{19.6} \\ & =2.87 \mathrm{~m} \end{aligned}$
B	Incorrect - used 35° for the angle instead of 30°
C	Incorrect - used $15 \times \cos 30^{\circ}$ for u_{y} instead of $15 \times \sin 30^{\circ}$
D	Incorrect - used $15 \mathrm{~m} \mathrm{~s}^{-1}$ for u_{y} instead of $15 \times \sin 30^{\circ}$
13	Calculate the orbital period...etc
A	Incorrect - used r^{2} instead of r^{3} in the first equation $\begin{aligned} \frac{T^{2}}{r^{2}} & =\frac{4 \pi^{2}}{G M_{e}} \\ \frac{T^{2}}{\left(4.00 \times 10^{8}\right)^{2}} & =\frac{4 \pi^{2}}{6.67 \times 10^{-11} \times 5 \times 10^{24}} \\ T^{2} & =1.58 \times 10^{4} \\ T & =1.26 \times 10^{2} s \\ & =3.49 \times 10^{-2} \mathrm{~h} \end{aligned}$
B	Incorrect - used 4π instead of $4 \pi^{2}$ in the equation $\begin{aligned} \frac{T^{2}}{r^{3}} & =\frac{4 \pi}{G M_{e}} \\ \frac{T^{2}}{\left(4.00 \times 10^{8}\right)^{3}} & =\frac{4 \pi}{6.67 \times 10^{-11} \times 5 \times 10^{24}} \\ T^{2} & =2.02 \times 10^{12} \\ T & =1.42 \times 10^{6} \mathrm{~s} \\ & =3.94 \times 10^{2} \mathrm{~h} \end{aligned}$
*C	Correct. $\begin{aligned} \frac{T^{2}}{r^{3}} & =\frac{4 \pi^{2}}{G M_{e}} \\ \frac{T^{2}}{\left(4.00 \times 10^{8}\right)^{3}} & =\frac{4 \pi^{2}}{6.67 \times 10^{-11} \times 5 \times 10^{24}} \\ T^{2} & =6.34 \times 10^{12} \\ T & =2.519 \times 10^{6} s \\ & =6.99 \times 10^{2} \mathrm{~h} \end{aligned}$
D	Incorrect - used the T^{2} value as seconds and then converted this to hours: $\begin{aligned} & T^{2}=6.34 \times 10^{12} \\ & \left.T \neq \frac{6.34 \times 10^{12}}{60 \times 60}=1.76 \times 10^{9} \mathrm{~h} \text { [incorrect }\right] \end{aligned}$
14	Which example describes one of Newton's laws of motion...etc.
A	Incorrect. Acceleration will depend on the mass and the force applied (2nd law)

*B	Correct.
C	Incorrect. This is a correct statement related to Einstein's Theory of Special Relativity but not to Newton's laws.
D	Incorrect. This is a correct statement related to Newton's law of universal gravitation but now to Newton's laws of motion.
15	Which Feynman diagram shows an electron
*A	Correct. See New Century Physics for Queensland (Walding) Units 3\&4, page 384, or the QCAA booklet Feynman diagrams: representing particle interactions. https://www.qcaa.qld.edu.au/downloads/senior- qce/sciences/snr_physics_19 Feynman_diagrams.pdf
B	Incorrect. The lower left particle is a positron, $\mathrm{e}+$. This is an example of electronpositron scattering.
C	Incorrect. The lower left particle is a positron, $\mathrm{e}+$. This is an example of electronpositron annihilation.
D	Incorrect. This is an example of a neutron decaying into a proton (beta negative decay).
16	The weight of a 5 kg object on Earth is...etc
A	Incorrect. This option wrongly assumes $g=9.8 \mathrm{~cm} / \mathrm{s}^{2}$ (in centimetres, not metres) so the result has to be divided by 100 to get it to metres. $F_{\mathrm{g}}=5 \times 9.8 / 100=0.49 \mathrm{~N}$
B	Incorrect. This option is the result of incorrectly writing the formula as $F_{\mathrm{g}}=m / g=5 / 9.8$ $=0.51 \mathrm{~N}$.
*C	Correct. Weight is a measure of the gravitational force on an object: $F_{\mathrm{g}}=m g$. On the surface of the Earth $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$. Thus $F_{\mathrm{g}}=5 \times 9.8=49.0 \mathrm{~N}$
D	Incorrect. This option wrongly assumes $g=9.8 \mathrm{~cm} / \mathrm{s}^{2}$, and incorrectly transcribes the formula as $F_{\mathrm{g}}=\mathrm{m} / \mathrm{g}$, so the result had to be divided by 100 to get it to metres: $F_{\mathrm{g}}=$ $5 /(9.8 / 100)=51 \mathrm{~N}$
17	Which fundamental force is mediated by photons...etc
A	Incorrect. The gravitational force is mediated by the gravitational field and its mediating particles are tentatively called 'gravitons', but yet to be confirmed.
B	Incorrect. The weak nuclear force's mediating particles are $\mathrm{W}+, \mathrm{W}-$, and Z^{0} gauge bosons.
C	Incorrect. The strong nuclear force is mediated by gluons.
*D	Correct. Photons mediate the electromagnetic force. See NCPQ U3\&4 p361 for table.
18	A gravitational field is the...etc
A	Incorrect. This is the definition of the gravitational field strength, g, which is given by the formula: $F_{\mathrm{g}}=m g$, hence $g=F_{\mathrm{g}} / m$. That can be stated as net gravitational force per unit mass.
B	Incorrect. This is the definition of gravitational potential energy: $E_{\mathrm{P}}=m g h$.
* C	Correct. A gravitational field is a region of space around a mass in which a gravitational force can be experienced by another mass.
D	Incorrect. It is true that it is a region of space, but it could apply to the force needed to move a charged particle in a magnetic field, or a gravitational field, not just an electric field. Work will be done in all cases.
19	A spaceship with a velocity of 9.0
A	Incorrect. The 125 m is incorrectly designated as proper length L_{0} because the question uses the term 'measured ...to an observer at rest'. However, the observer is at rest relative to the spaceship - which is moving. The question does not say the observer is at rest relative to the spaceship. This option uses this calculation (which is wrong):

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}L=L_{0} \sqrt{1-(v / c)^{2}} \\ \left.=125 \times \sqrt{1-\left(\frac{9 \times 10^{7}}{3 \times 10^{8}}\right.}\right)^{2}\end{array}=125 \times 0.9539 \\ & =119 \mathrm{~m}\end{array}\right)$

	This could be a delay of up to 0.2 s for each event so it is not certain that use of the stopwatch would definitely improve accuracy.

