QCAA PHYSICS EXTERNAL ASSESSMENT 2021

Worked solutions and explanations to Paper 1 Multiple choice

- from Dr Richard Walding, author New Century Physics for Queensland (OUP)

Note: I have included worked solutions and explanations to the multiple choice questions of the QCAA Physics 2020 EA and the 2019 Sample EA in the *Oxford Study Buddy* Vol. 1 (Walding & O'Callaghan, 2021). See: oup.com.au/studybuddy

Q	Option	Solutions and explanations (validity statements and distractor justification)		
1	А	Incorrect. Leptons such as electrons and neutrinos do experience the weak force such as in beta		
		decay.		
	В	Correct. Quarks, but not leptons, experience the strong (nuclear) force. Even charged leptons such		
		as electrons and positrons do not experience the strong nuclear force. Note that 'strong force' in		
		the question is not a syllabus term and represents the syllabus term 'strong nuclear force'. But we		
	~	know what QCAA meant.		
	С	Incorrect. Objects with mass experience the gravitational force, and leptons do have mass. Even neutrinos are NOT massless.		
	D	Incorrect. Electrically charged particles experience the electromagnetic force, and leptons such as		
		electrons, positrons and muons are electrically charged. However, not all leptons are electrically		
		charged – such as neutrinos – and they will not experience the electromagnetic force.		
2	А	Correct: $38 \times \cos 42^\circ = 28 \text{ m s}^{-1}$		
	В	Incorrect: $38 \times \sin 42^\circ = 25 \text{ m s}^{-1}$		
	С	Incorrect: $42 \times \cos 38^\circ = 33 \text{ m s}^{-1} (\approx 34 \text{ m s}^{-1})$		
	D	Incorrect: has calculated the average of the two values $(38 + 42)/2 = 40$ without any reason.		
3	А	Correct. This is equivalent to the formula in the Formula Book and syllabus $\Delta E = \Delta mc^2$ where E		
		or ΔE represent the change in energy, and <i>m</i> or Δm represent the equivalent change in mass.		
	В	Incorrect. This is the gravitational potential energy formula which relates the energy of an object		
		of mass m at a position h in a gravitational field of strength g .		
	С	Incorrect. This formula incorrectly uses the non-relativistic kinetic energy formula $E = \frac{1}{2} mv^2$ to		
		an object travelling at the speed of light where $v = c$, hence $E = \frac{1}{2} mc^2$, without taking into		
	5	account relativistic effects.		
	D	neonect of mass <i>m</i> travelling at a speed v. It only applies at non-relativistic speeds		
4		object of mass <i>m</i> travelling at a speed <i>v</i> . It only applies at non-relativistic speeds.		
4	А	incorrect. It is true that if one of the charges is doubled the force will double, but if the separation		
		the same (1E)		
	B	Incorrect It is true that if the separation distance is helved the force will increase fourfald (as it is		
	D	an inverse square relationship) But if one of the charges is doubled the force will double. For the		
		answer to be 2F, this force would have to halve (not double) so that the product of $4 \times$ and $\frac{1}{2} \times$		
		will be $2\times$ (or 2F).		
	С	Incorrect. Both changes result in an increase in the force. Doubling the charge will amount to 2F,		
		but halving the distance will amount to $(2d)^2$ or 4F. This option does not take into consideration		
		that the distance is an inverse squared relationship.		
	D	Correct.		
		$_{E}$ 1 Qq		
		$r = \frac{1}{4\pi\varepsilon_0} \frac{r^2}{r^2}$		
		kaa		
		$F = \frac{\pi q_1 q_2}{d^2} (initial \ force)$		
		$F' = \frac{k q_1 \times 2q_2}{8 \times k q_1 q_2} = \frac{8 \times k q_1 q_2}{8 \times k q_1 q_2} = 8F$		
		$\left(\frac{d}{2}\right)^2 = d^2$		
		(2)		

	1			
5	А	Correct. Mesons are subatomic (but not elementary as they can be further subdivided into smaller		
		particles: quarks and antiquarks). Only quarks and leptons are considered elementary. Mesons are		
		composed of two particles only: a quark and an antiquark. By the way: the quark and antiquark		
		don't have to be the same flavour, eg up and antiup.		
	В	Incorrect. They are not elementary as they are a composite of two elementary particles (quark and		
		antiquark). It is true that they are subatomic as they are smaller than an atom.		
	С	Incorrect. They are not elementary as they are a composite of two elementary particles (quark and		
		antiquark). The particle exchanged between quarks is the gluon, not a meson. However, the gluon		
		is also exchanged between mesons.		
	D	Incorrect. It is true that mesons are subatomic, but they are composed of two particles - a quark		
		and an anti-quark. A composite particle composed of three quarks, such as a proton or a neutron, is known as a <i>barvon</i> . However, a meson and a barvon are different, but both belong to the group		
		is known as a <i>baryon</i> . However, a meson and a baryon are different, but both belong to the group known as hadrons because they are quark composites.		
		known as hadrons because they are quark composites.		
6	А	Incorrect. Electromagnetic radiation (emr) applies to all frequencies of wave-based radiat		
		just high frequency. It is true that extremely high-frequency radiation, such as gamma radiation, is		
		emitted from the nucleus of some radionuclides during nuclear reactions, but this is irrelevant.		
	В	Incorrect. It is true that emr can display wave or particle properties, but it doesn't have to be in the		
		form high energy ionising particles. This option is only partly true.		
	С	Incorrect. It is true that <i>emr</i> is a wave of energy produced by an oscillating electric charge.		
		However, the mutually perpendicular electric (E) and magnetic (B) fields are the wave of energy,		
		and not resulting from the wave of energy. The E and B fields are also synchronised as well as		
		being mutually perpendicular. A correct statement would be 'Emr is a wave of energy consisting		
		of mutually perpendicular synchronised electric and magnetic fields produced by an oscillating		
		electric charge.' In summary, this option is partly true.		
	D	Correct. Although this option has omitted the term 'mutually perpendicular' – all parts of it are		
		correct, nonetheless. Note that the condition 'in a vacuum' is correctly appended to 'propagated at		
		the speed of light'. Without a mention of a vacuum, this statement would be incorrect. Be warned! Incorrect. The statement 'parallel to the surface' refers to one of the common components used in		
7	А	Incorrect. The statement 'parallel to the surface' refers to one of the common components used in		
		incline plane questions, and this option is designed to trick you by seeming familiar. It is correct		
		for inclines but irrelevant for this question.		
	В	Correct. 'Normal' means perpendicular to the surface, even if the surface is not horizontal. It from		
		the Latin norma meaning a 'carpenter's square'.		
	С	Incorrect. This statement is partially correct for objects on a horizontal surface where the only		
		applied force acting is gravity. At other angles such as on an incline, or an object being pushed or		
		pulled at an angle to the surface, this statement is incorrect. It is also incorrect when the force is		
		due to a magnetic or electric field for example.		
	D	Incorrect. It is neither just for gravitational force, nor in the direction of the applied (gravitational,		
		magnetic, electric) force, but would be in the opposite direction if anything.		
8	А	Incorrect. The magnitude of the resultant vector is correct but the interior opposite angle (90° –		
		54.4°) is given in the answer.		
	В	Correct.		
		1. Decomposition (components) method		
		Firstly, determine the horizontal and vertical components of the two vectors:		
		A B		
		20 30 30 30 30 30 30 30 30 30 30 30 30 30		
		$s_v = 30 \text{ sm} 30^\circ$		
		$s_{h} = 30 \cos 30^{\circ}$		
1				

		Vertical component (m)	Horizontal component (m)
	Vector A	20	0
	Vector B	$30 \sin 30^\circ = 15$	$30\cos 30^\circ = 26$
	Sum	35	26
	Resultant θ horizontal 26 m		
	resultant = $\sqrt{35^2 + 26^2} = 43.6$ $\tan^{-1}\theta = \frac{35}{26}$	o m	
	$\theta = 53.4^{\circ}$ 2. Cos/sin method		
	C 30° C a Resultant vector 20 m B θ		
	Cosine rule: $c^2 = a^2 + b^2 - 2ab\cos c$		
	$=20^{2}+30^{2}-2\times20\times30\times c$	$\cos(90+30)$	
	$-20 + 50 - 2 \times 20 \times 50 \times \cos(50 + 50)$ -1300 (600)		
	-1000		
	$c = \sqrt{1900} = 43.6 m$		
	Sin rule:		
	b = c		
	$\sin B \sin C$		
	$\frac{30}{30} = \frac{43.6}{30}$		
	$\sin P$ $\sin 120^{\circ}$		
	SIII D SIII I 20		
	$\sin B = \frac{30 \times 0.866}{43.6} = 0.596$		
	$\sin B = \frac{30 \times 0.866}{43.6} = 0.596$ $B = \sin^{-1} 0.566 = 36.6^{\circ}$		
	$\sin B = \frac{30 \times 0.866}{43.6} = 0.596$ $B = \sin^{-1} 0.566 = 36.6^{\circ}$ $\therefore \theta = 90^{\circ} - 36.6 = 53.4^{\circ}$		
<u></u>	$\sin B = \frac{30 \times 0.866}{43.6} = 0.596$ $B = \sin^{-1} 0.566 = 36.6^{\circ}$ $\therefore \theta = 90^{\circ} - 36.6 = 53.4^{\circ}$ Incorrect. For vector B, answer 1	incorrectly used <i>sin</i> for horizonta	l and <i>cos</i> for vertical, and
	$\sin B = \frac{30 \times 0.866}{43.6} = 0.596$ $B = \sin^{-1} 0.566 = 36.6^{\circ}$ $\therefore \theta = 90^{\circ} - 36.6 = 53.4^{\circ}$ Incorrect. For vector B, answer incorrectly gave the interior opp	incorrectly used <i>sin</i> for horizonta osite angle (90° – 71.9°) based o	l and <i>cos</i> for vertical, and n this result.

9	А	Incorrect. This is Dalton's 'billiard ball' model from 1808. Because Dalton thought atoms were		
		the smallest particles of matter, he envisioned them as solid, hard spheres, like billiard balls, so he		
		used wooden balls to model them.		
	В	Incorrect. This is a part of Rutherford's model in which he said negatively charged electrons orbit		
		the nucleus, but he didn't say they were in fixed orbits like Bohr said later.		
	С	Incorrect. This is Thomson's 'plum pudding' model in which electrons were scattered in a sphere		
		of a positively charged substrate (or 'fluid') like raisins in a plum pudding. The Bohr model		
		proposed that the electrons were in fixed orbits or 'stationary states' around a small dense		
		positively charged nucleus, and not just scattered throughout the atom.		
	D	Correct The Bohr model still uses the Rutherford model of a <i>small positive nucleus surrounded</i>		
	D	<i>by negative electrons</i> but also states that the electrons orbit the nucleus in <i>particular circular</i>		
		orbits with fixed angular momentum and energy.		
10	Δ	Correct <i>Proper length</i> is the length as measured by an observer at rest to the object being		
10 A		measured		
	B	Incorrect. If the object appears to be moving to an observer, that observer will measure dilated (or		
	Б	relativistic) length but will also agree that the observer moving with the object will measure		
		renar length		
	C	Incorrect. The term 'accelerating' implies that an object is in motion, and thus measurement of the		
	C	Incorrect. The term accelerating implies that an object is in motion, and thus measurement of the		
		Vey early also argue that Special Balativity ambies only to chiests maying at constant valuatity.		
		rolative to one another, and so the idea of proper length is not covered by the theory		
	D	relative to one another, and so the idea of <i>proper length</i> is not covered by the theory.		
	D	incorrect. If the object appears to be moving to an observer, that observer will measure dilated (or		
11		relativistic) length – irrespective of whether the object is at constant velocity or is accelerating.		
11	А	Incorrect. The force has to be perpendicular not parallel. The first part constant speed, due to a		
	D	force of constant magnitude', however, is correct.		
	В	Incorrect. The force has to be perpendicular not parallel, and has to refer to velocity (which is a		
	9	vector so has a direction) and not speed (which is a scalar and has no direction).		
	С	Correct. Must have a constant <i>speed</i> (not velocity) because its direction of motion is always		
		changing so the velocity is changing. Also, the force must be <i>perpendicular</i> to the direction of the		
		velocity vector.		
	D	Incorrect. The answer has to refer to <i>velocity</i> (which is a vector so has a direction) and not to		
		speed (which is a scalar and has no direction).		
12	А	Correct.		
		The initial velocity of the projectile in the vertical direction is:		
		$u_y = u \sin \theta$		
		$-15\sin 30^{\circ}$		
		$= 7.5 m s^{-2}$		
		At the top of it's flight the projectile has zero velocity ($v_y = 0 \text{ m s}^{-1}$)		
		$v_{y}^{2} = u_{y}^{2} + 2gs_{y}$		
		$0 = 7.5^2 + 2 \times (-9.8) \times s_{y}$		
		56.05		
		$s_{y} = \frac{-30.23}{1000}$		
		19.6		
		= 2.87 m		
	В	Incorrect – used 35° for the angle instead of 30°		
	С	Incorrect – used $15 \times \cos 30^\circ$ for u_y instead of $15 \times \sin 30^\circ$		
	D	Incorrect – used 15 m s ⁻¹ for u_v instead of 15 × sin30°		

13	А	Incorrect – used r^2 instead of r^3 in the first equation		
		$T^2 = 4\pi^2$		
		$\frac{1}{r^2} = \frac{m}{GM}$		
		T^2 T^2		
		$\frac{T^2}{1} = \frac{4\pi^2}{1}$		
		$(4.00 \times 10^8)^2$ $6.67 \times 10^{-11} \times 5 \times 10^{24}$		
		$T^2 = 1.58 \times 10^4$		
		$T = 1.26 \times 10^2 s$		
		$= 3.49 \times 10^{-2} h$		
	В	Incorrect – used 4π instead of $4\pi^2$ in the equation		
		$T^2 - 4\pi$		
		$r^3 - \overline{GM_e}$		
		T^2 4π		
		$\frac{1}{(4.00 \times 10^8)^3} = \frac{1}{6.67 \times 10^{-11} \times 5 \times 10^{24}}$	-	
		$T^2 = 2.02 \times 10^{12}$		
		$T = 1.42 \times 10^6 s$		
		$= 3.94 \times 10^2 h$		
	С	Correct.		
		T^2 $4\pi^2$		
		$\frac{1}{r^3} = \frac{1}{GM_e}$		
		T^2 $4\pi^2$		
		$\frac{1}{(4.00 \times 10^8)^3} = \frac{1}{6.67 \times 10^{-11} \times 5 \times 10^{24}}$	-	
		$T^2 = 6.34 \times 10^{12}$		
		$T = 2.519 \times 10^6 s$		
		$= 6.99 \times 10^2 h$		
	D	Incorrect – used the T ² value as second	s and then converted this to hours:	
		$T^2 = 6.34 \times 10^{12}$		
		6.34×10^{12}		
		$T \neq \frac{0.54 \times 10}{60 \times 60} = 1.76 \times 10^9 h \text{ [incorrect]}$		
14	А	Incorrect. There is no change to the magnitude of the charge but there may be separation of the		
		charges.		
	В	Incorrect. Similar to Option A: there is no change to the magnitude of the charge but there may be		
		separation of the charges.		
	C	Incorrect. The force is perpendicular, r	ot parallel to the field.	
	D	Correct.	force on wire, F	
		A moving charge experiences a force		
		magnetic field. This is usually	magnetic field. B	
		demonstrated using Fleming's LH		
		Rule, or the Right-hand Palm (Slap)		
		rule. In both cases, the force is at		
		right angles to the field. See New	current, I	
		Century Physics for Queensland		
		(Walding) Units 3&4, page 195 (see		
		diagram opposite):	FIGURE 1 Fleming's left-hand rule	
1	1		-	

15	А	Correct. See New Century Physics for Queensland (Walding) Units 3&4, page 384, or the QCAA		
		booklet Feynman diagrams: representing particle interactions.		
		https://www.qcaa.qld.edu.au/downloads/senior-qce/sciences/snr_physics_19_Feynman_diagrams.pdf		
	В	Incorrect. The lower left particle is a positron, e+. This is an example of electron-positron		
-	C	scattering.		
	C	annihilation		
	D	<i>unninuuuon.</i> Incorrect This is an example of a neutron decaying into a proton (beta negative decay)		
16		Incorrect. This is an example of a neutron decaying into a proton (beta negative decay).		
10	A	to be divided by 100 to get it to metres. $F_g = 5 \times 9.8/100 = 0.49$ N		
	В	Incorrect. This option is the result of incorrectly writing the formula as $F_g = m/g = 5/9.8 = 0.51$ N.		
	С	Correct. Weight is a measure of the gravitational force on an object: $F_g = mg$. On the surface of		
		the Earth $g = 9.8 \text{ m s}^{-2}$. Thus $F_g = 5 \times 9.8 = 49.0 \text{ N}$		
	D	Incorrect. This option wrongly assumes $g = 9.8 \text{ cm/s}^2$, and incorrectly transcribes the formula as		
		$F_{\rm g} = {\rm m/g}$, so the result had to be divided by 100 to get it to metres: $F_{\rm g} = {\rm 5/(9.8/100)} = {\rm 51 \ N}$		
17	Α	Incorrect. This is the definition of <i>electric field strength</i> , <i>E</i> .		
	В	Incorrect. This is the definition of <i>electric potential difference</i> , ΔV .		
	С	Correct. Energy is defined as the capacity to do work. Hence, <i>electrical potential energy is the</i>		
		capacity of electric charge carriers, such as electrons, to do work. They owe their energy to their		
		position in an electrical circuit which is an arbitrary measure of the electric field strength at that		
	-	point in the circuit.		
	D	Incorrect. This is partly true, but it only requires the electron to be moved though an electrical		
		potential difference and this could be at either a constant speed or accelerating. Also, it doesn't		
		difference		
18	٨	Incorrect. This is the definition of the <i>gravitational field strength</i> a which is given by the		
10	A	formula: $F = mg$ hence $g = F/m$. That can be stated as net gravitational force per unit mass		
	B	Incorrect This is the definition of gravitational notential energy: $F_{\rm p} = mgh$		
-	C	Correct A gravitational field is a <i>region of space</i> around a mass in which a gravitational force can		
	C	be experienced by another mass.		
-	D	Incorrect. It is true that it is a region of space, but it could apply to the force needed to move a		
	_	charged particle in a magnetic field, or a gravitational field, not just an electric field. Work will be		
		done in all cases.		
19	А	Incorrect. The 125 m is incorrectly designated as <i>proper length</i> L_0 because the question uses the		
		term 'measured to an observer at rest'. However, the observer is at rest relative to the spaceship		
		- which is moving. The question does not say the observer is at rest relative to the spaceship.		
		This option uses this calculation (which is wrong):		
		$L = L_{o} \sqrt{1 - (v/c)^2}$		
		$=125 \times \sqrt{1 - (\frac{9 \times 10^7}{3 \times 10^8})^2} = 125 \times 0.9539$		
		= 119 m		
	В	Correct. The observer is at rest and sees a spaceship moving at a relativistic speed and measures		
		the spaceship's length to be 125 m. This is the <i>relativistic length</i> L. It is not the proper length L_0		
		as the observer is not at rest to the spaceship which is moving. I found it very tricky.		

		$L = L_0 \sqrt{1 - (v/c)^2}$		
		$L = \frac{L}{L} = \frac{125}{125}$		
		$L_0 = \frac{1}{\sqrt{1 - (v/c)^2}} = \frac{1}{\sqrt{1 - (v/c)^2}} = \frac{1}{\sqrt{1 - (v/c)^2}} = \frac{1}{0.9539}$		
		$\sqrt{1-(\frac{3}{3\times 10^8})}$		
		= 131m		
	С	Incorrect. The <i>relativistic length L</i> is correctly identified, but the square root in the denominator		
		has been omitted. This option uses the calculation: $I = \frac{125}{125}$		
		$L_0 = \frac{L}{1 - (v/c)^2} = \frac{125}{1 - (9 \times 10^7)^2} = \frac{125}{0.910}$		
		$1 - (\frac{3 \times 10^8}{3 \times 10^8})$		
		= 137 m		
	D	Incorrect. This answer has used a wrong value for speed $(9.0 \times 10^8 \text{ instead of } 9.0 \times 10^7)$ and then		
		ignored the subsequent negative in the square root. That is:		
		$L = L_0 \sqrt{1 - (v/c)^2}$		
		$L_0 = \frac{L}{\sqrt{1-1}} = \frac{125}{\sqrt{1-1}} = \frac{125}{\sqrt{1-1}} = \frac{125}{\sqrt{1-1}}$		
		$\sqrt[9]{\sqrt{1-(v/c)^2}} \sqrt{1-(\frac{9\times10^8}{2})^2} \sqrt{-2} 1.414$		
		$\sqrt{3 \times 10^{2}}$		
20	Δ	$= 177 m (\approx 178 m)$		
20	11	(J) but has not converted it to a frequency in Hz. In effect, the answer is just the work function		
		(hf_0) in joule, but is stated as a frequency in Hz.		
		$E = hf - hf_0$		
		$2.5 \times 10^{-19} = h \times 1.3 \times 10^{15} - hf_0$		
		$= (6.625 \times 10^{-34} \times 1.3 \times 10^{15}) - hf_0$		
		$hf_0 = 8.6 \times 10^{-19} - 2.5 \times 10^{-19}$		
		$= 6.1 \times 10^{-19} J [= work function, W]$		
	В	Incorrect. This option uses the equation $E = hf$ to calculate the frequency, but this is just the energy of the ejected electron and can not be applied to a photon to determine its frequency.		
		chergy of the ejected election and can not be applied to a photon to determine its nequency.		
		E = hf		
		$f = \frac{E}{E} = \frac{2.5 \times 10^{-19}}{10^{-19}}$		
		$\int h = 6.625 \times 10^{-34}$		
		$= 3.77 \times 10^{14} Hz$		
	С	Correct. $E = hf$ hf		
		$E - hy - hy_0$ $2.5 \times 10^{-19} - h(1.2 \times 10^{15} - f)$		
		$2.5 \times 10^{-19} = h(1.3 \times 10^{-1} - f_0)$		
		$\frac{2.5 \times 10}{6.625 \times 10^{-34}} = 1.3 \times 10^{15} - f_0$		
		$f_0 = 1.3 \times 10^{15} - 3.77 \times 10^{14}$		
		$=9.2 \times 10^{14} Hz$		
	D	Incorrect. Rearranging Equation 1 below is incorrect. The sign in Equation 2 should be a negative		
		(-).		

$$E = hf - hf_0$$

$$2.5 \times 10^{-19} = h(1.3 \times 10^{15} - f_0)$$

$$\frac{2.5 \times 10^{-19}}{6.625 \times 10^{-34}} = 1.3 \times 10^{15} - f_0 \quad \text{[Equation 1]}$$

$$f_0 = 1.3 \times 10^{15} + 3.77 \times 10^{14} \quad \text{[Equation 2]}$$

$$= 1.7 \times 10^{15} Hz$$

All the best for the 2022 EA.