QCAA PHYSICS EXTERNAL EXAM - 2022 MULTIPLE CHOICE QUESTIONS - SOLUTIONS AND EXPLANATIONS

Dr Richard Walding, richard@walding.com

> Note: NCPQ refers to New Century Physics for Queensland, U3 \& 4, 2020, OUP. Glossary refers to the QCAA Physics Syllabus 2019.
> Percentages (\%) indicate the overall choice by students (QCAA Subject Report 2023)
> Copyright. R. Walding 2023. Feel free to copy for class use. Not to be sold.

Q		\%	Reasoning
1	A	64.44	Incorrect. This is the definition of electromagnetic induction and not electromagnetic force. See Glossary page 73 and NCPQ p215.
	B	25.14	Correct. See Glossary page 73 and NCPQ p 215.
	C	6.96	Incorrect. This is the definition for electrostatic repulsion. See Glossary page 73: the repulsion experienced by two like charged particles. See also NCPQ p 155.
	D	3.21	Incorrect. Electromotive force (EMF) is not one of the four fundamental forces, which are strong nuclear force, electromagnetic force, weak nuclear force, and gravitational force. EMF is generated by the dynamic interaction (relative motion) of a conductor with a magnetic field. This interaction is mediated by the electromagnetic force (a fundamental force) which produces the EMF (also known as 'voltage'). See Glossary page 73 and NCPQ p 358.
2	A	18.32	Incorrect. This refers to electromagnetic radiation. See Glossary: electromagnetic radiation - electromagnetic waves, propagated at the speed of light in a vacuum
	B	8.66	Incorrect. Photons do not require a medium for their propagation. See NCPQ U3\&4 p302
	C	63.1	Correct. Glossary p 86 and NCPQ p315 and 316.
	D	9.62	Incorrect. This refers to a gluon. See Glossary in NCPQ page 415.
3	A	52.23	Correct. Constant speed means no acceleration and thus no net force. Forces along (parallel to) the plane must be equal and opposite. As the object is said to be moving up the plane, the frictional force F_{f} must act down the plane, and the tension in the rope by which the object is pulled must act up the inclined plane. However, to the frictional force down the plane, we must add the parallel component of the weight. The weight, F_{g}, can be resolved into two vectors at right angles, thus: So, to the friction (acting down the plane) we can add $F_{\mathrm{g}} \sin \theta$ and this combination must be equal and opposite to F_{T} acting up the plane. Only option (A) satisfies this criterion.

			As well, (A) correctly has the normal force F_{N} acting upwards at right angles to the plane. If we compare F_{N} and $F_{\mathrm{g}} \cos \theta$ we see that they are equal and opposite as well, and this is to be expected.
	B	37.61	Incorrect. It is partly correct in that the object must be moving at constant speed because the tension (in the rope) F_{T} pulling the object up the inclined plane is equal to the frictional force F_{f} acting down the plane. However, when we add the component of the weight $F_{\mathrm{g}} \sin \theta$ to F_{F}, the sum is greater than F_{T} so the object will accelerate down the incline.
	C	7.66	Incorrect. The object must be moving down the plane. The tension in the pulling force F_{T} acts down the plane and is equal to the frictional force up the plane. You would think that as the two forces are equal there is no acceleration so it will travel at constant speed down the plane. However, the questions states that the object is moving up the plane so friction must act down.
	D	2.33	Incorrect. Friction F_{f} is greater than tension F_{T} and this cannot happen. It is always less than, or equal to, the tension force. F_{T} less than F_{f} so the object cannot be moving up the plane (at constant speed, or accelerating) anyway.
4	A	13.87	Incorrect. Forgot to square the $T=5.6 \times 10^{3}$ value. See equation below.
	B	66.88	Correct. Apply the formula derived from Kepler's and Newton's laws. See NCPQ p 141 and Worked Example 5.1C p 142. $\begin{aligned} \frac{T^{2}}{r^{3}} & =\frac{4 \pi^{2}}{G M} \\ r^{3} & =\frac{T^{2} G M}{4 \pi^{2}}=\frac{\left(5.6 \times 10^{3}\right)^{2} \times 6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{4 \pi^{2}} \\ & =3.163 \times 10^{20} \\ r & =6.8 \times 10^{6} \mathrm{~m} \end{aligned}$
	C	13.02	Incorrect. Took the square root of $r^{3}=3.163 \times 10^{20}$ instead of the cube root.
	D	5.63	Incorrect. Used $\frac{T^{3}}{r^{2}}=\frac{4 \pi^{2}}{G M}$ instead of the correct formula.
5	A	3.33	Incorrect. Tau are not bosons but are leptons. Bosons are the mediating particle that carry forces. See NCPQ p 358.
	B	85.35	Correct. Tau are leptons along with muons and electrons, and the associated neutrinos.
	C	6.39	Incorrect. Mesons are composite particles made up of a quark and an antiquark pair. See NCPQ p 355.

	D	4.71	Incorrect. Baryons are particles made up of 3 quarks. See NCPQ p 355. Note: some sources define baryons as being composed of an odd number of quarks greater than 1 . This is not the syllabus definition, nor the one in NCPQ. Baryons have 3 quarks.
6	A	86.95	Correct. It is an interaction between waves caused by constructive and destructive interference. This phenomenon can only occur with waves. Note that 'coherent' is not defined in the syllabus but is in NCPQ p 301. It is essential to understand its meaning.
	B	2.33	Incorrect. The width of the slits will affect the pattern but not the phenomena of interference and the banding. See NCPQ p 301.
	C	5.98	Incorrect. 'Discrete packets of photons' is a characteristic of the particle model of light. Hence, it cannot explain the interference (a wave phenomenon). NCPQ p 310.
	D	4.55	Incorrect. The distance will affect the spacing in the pattern but not the phenomena of interference and the banding. Further reading see NCPQ U1\&2, p 362.
7	A	4.41	Incorrect. Decreasing the thickness would increase the resistance and allow a smaller current to flow. The equation $B=\mu_{0} \frac{N}{L} I$ says that B is proportional to current, so decrease I and you will decrease B. See NCPQ p 193.
	B	5.98	Incorrect. Increasing the length of the solenoid will decrease the magnetic field strength as shown by the equation: $B=\mu_{0} \frac{N}{L} I$ which says that B is inversely proportional to length, so increase L and you will decrease B.
	C	79.75	Correct. The formula $B=\mu_{0} \frac{N}{L} I$ shows that B is directly proportional to N so increase N and you will increase B.
	D	9.56	Incorrect. Alternating current passes through a $V=0$ during each cycle so this will reduce the average B value in a cycle.
8	A	6.26	Incorrect. Used an incorrect formula. Used $E=\frac{\lambda}{c}$ as follows: $\lambda=E \times c=2.4 \times 10^{-23} \times 3 \times 10^{8}=7.2 \times 10^{-15} \mathrm{~m}$
	B	21.35	Incorrect. Used an incorrect formula. Used $E=\frac{h}{\lambda}$ as follows: $\lambda=\frac{h}{E}=\frac{6.625 \times 10^{-34}}{2.4 \times 10^{-23}}=2.76 \times 10^{-11} \mathrm{~m}$
	C	63.12	Correct. The question, in other words, is asking you to determine the wavelength of a photon with an energy of $2.4 \times 10^{-23} \mathrm{~J}$. This correct option uses the correct formula: $\begin{gathered} E=h f=\frac{h \lambda}{c} \\ \lambda=\frac{h c}{E}=\frac{6.625 \times 10^{-34} \times 3 \times 10^{8}}{2.4 \times 10^{-23}}=8.3 \times 10^{-3} \mathrm{~m} \end{gathered}$ See QCAA Formula and Data Book, and NCPQ p 310. See also, Worked Example 11.4A p 312.
	D	8.23	Incorrect. Has formula upside down. Rearranges $E=\frac{h c}{\lambda}$ to $\lambda=\frac{E}{h c}=1.2 \times 10^{2} \mathrm{~m}$

| 9 | A | 39.98 | Incorrect. The range is only 9.4 m. See method in Option (B) below.
 $t=\frac{2 \times v \times \sin \theta}{}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

			for light, and one that distinguishes it from the wave mode;. Learn this. See NCPQ p 314.
	D	45.17	Correct. A decrease in wavelength of the light (photons) means an increase in the frequency and thus higher energy of these incident photons $(E=h f)$. Some of this energy is used in overcoming W but there will be a greater amount left for E_{K} of the photoelectrons.
12	A	83.62	Correct. $v=\frac{2 \pi r}{T}$, thus $r=\frac{v T}{2 \pi}=\frac{8.0 \times 0.3}{2 \pi}=0.38 \mathrm{~m}=3.8 \times 10^{1} \mathrm{~m}$. NCPQ p 198.
	B	8.51	Incorrect. Has wrongly used $r=\frac{2 \pi}{v T}=15 \mathrm{~m}=1.5 \times 10^{1} \mathrm{~m}$
	C	3.91	Incorrect. Has wrongly used $r=v \times 2 \pi \times T=216 \mathrm{~m}=2.16 \times 10^{2} \mathrm{~m}$
	D	3.58	Incorrect. Has wrongly used $r=\frac{2 \pi \times v}{T}=170 \mathrm{~m}=1.7 \times 10^{2} \mathrm{~m}$
13	A	7.54	Incorrect. May have omitted the area: $t=\frac{N \times \Delta B}{E M F}=\frac{3000 \times 2 \times 10^{-3}}{6}=1 \mathrm{~s}$, thus 1 rps .
	B	22.79	Incorrect. May have miscalculated the area: $\begin{aligned} & \Delta t=-\frac{3000 \times\left(2 \times 10^{-3}\right) \times(0.1+0.2)}{6}=0.33 \mathrm{~s} \\ & \mathrm{f}=\frac{1}{T}=\frac{1}{0.33}=3 \mathrm{rps} \end{aligned}$
	C	28.62	Correct. The magnetic flux threading the rotating coil would be zero when the plane of the coil is parallel to the field, and a maximum when the plane is at right angles $\left(90^{\circ}\right)$ to the field. The change in flux for $90^{\circ}(1 / 4$ turn) rotation can be used in Faraday's equation: $\begin{aligned} & e m f=-\frac{n \Delta\left(B A_{\perp}\right)}{\Delta t} \\ & \Delta t=-\frac{n \Delta(B A)}{e m f} \\ & \Delta t=-\frac{n \times \Delta B \times A}{e m f} \\ & =-\frac{3000 \times\left(0-2 \times 10^{-3}\right) \times(0.1 \times 0.2)}{6} \\ & =0.02 \mathrm{~s}(\text { for } 1 / 4 \mathrm{turn}) \\ & =0.02 \times 4=0.08(\text { for } 1 \mathrm{turn}) \\ & f=\frac{1}{T}=\frac{1}{0.08}=12.5 \mathrm{rps} \approx 13 \mathrm{rps}(C) \end{aligned}$ Note: see NCPQ p 201, Figure 15, and Question 8 CYL 8.2 p 219. See also the EMF diagram in Q18 p 238. Alternatively: Using Faraday's other two equations. Consider a loop rotating one-quarter of a turn:

			$\begin{aligned} & =-n \frac{\Delta(B A \cos \theta)}{\Delta t} \\ & =-n \frac{B A \Delta(\cos \theta)}{\Delta t} \\ \Delta t & =-n \frac{B A \Delta(\cos \theta)}{e m f} \end{aligned}$ Now $\Delta(\cos \theta)=-1$ given that θ goes from 0° to 90° in $1 / 4$ of a turn. Thus: $\begin{aligned} \Delta t & =n \frac{B A}{e m f} \\ & =\frac{3000 \times\left(2 \times 10^{-3}\right) \times(0.1 \times 0.2)}{6} \\ & =0.02 \mathrm{~s}(\text { for } 114 \mathrm{turn}) \\ & =0.08 \mathrm{~s}(\text { for } 1 \text { turn }) \\ f & =\frac{1}{T}=\frac{1}{0.08} \\ & =12.5 \mathrm{~s}^{-1} \approx 13 \mathrm{rps}(C) \end{aligned}$
	D	39.81	Incorrect. Answer has used the 0.02 s calculated in option (C) as the time for 1 rotation instead of the time for $1 / 4$ rotation. $\begin{aligned} T & =0.02 \mathrm{~s} \text { for } 1 \text { cycle } \\ f & =\frac{1}{T}=\frac{1}{0.02} \\ & =50 \mathrm{rps} \end{aligned}$
14	A	4.16	Incorrect. The neutron $u d d$ is wrongly shown as staying a neutron $u d d$ but should turn into a proton uud.
	B	22.71	Incorrect. Shows a W+ decay when it should be a W- to conserve charge. The proton is + , so the W boson must be -
	C	63.75	Correct. See diagram in QCAA Feynman diagram booklet, and NCPQ p 387.
	D	9.06	Incorrect. The neutron $u d d$ on the left is shown as staying a neutron $u d d$ on the right, and is not a proton uud as it should be.
15	A	41.21	Incorrect. An observer can measure an object's motion relative to any reference frame, fixed or otherwise.
	B	13.85	Incorrect. An observer can measure an object's velocity relative to the speed of light (eg $0.8 \mathrm{c})$ but doesn't have to. It can be measured relative to any object in any reference frame. NCPQ p 252.
	C	16.00	Incorrect. An observer can measure an object's motion relative to any reference frame, fixed or otherwise.
	D	28.55	Correct. An object's velocity can only be measured relative to an observer doing the measuring. The velocity relative to other objects can then be determined.
16	A	11.87	Incorrect. See reasoning below.
	B	4.43	Incorrect. The resultant is pointing the wrong way.
	C	10.42	Incorrect. The resultant is pointing the wrong way.

D	72.83	Correct. There are two main ways of doing this question. The first is the 'components' method. Thus, for addition, place the vectors head to tail and draw the resultant vector $\vec{X}+\vec{Y}:$ Determine the horizontal (h) and vertical (v) components of the original X and Y we get: $\begin{aligned} & X_{v}=35 \sin 40=+22.5 \quad X_{h}=35 \cos 40=+26.8 \\ & Y_{\mathrm{v}}=48 \sin 60=-41.6 \quad Y_{h}=48 \cos 60=+24 \\ & (X+Y)_{h}=+22.5+(-41.6)=-19.1 \mathrm{~m} \quad(\mathrm{X}+\mathrm{Y})_{\mathrm{h}}=+26.8+(+24)=+50.8 \end{aligned}$ Hypotenuse $=\sqrt{19.1^{2}+50.8^{2}}=\mathbf{5 4 . 3}$ Angle $\theta=\tan ^{-1}\left(\frac{50.8}{19.1}\right)=69.4^{\circ}$. Angle $\phi=90.0-69.4=\mathbf{2 0 . 6}^{\circ}$ (D) The second method is the 'cosine and sin' method. Firstly, draw the diagram similar to above but with labels to suit the cos rule:

			$\begin{aligned} a^{2} & =48^{2}+35^{2}-2 \times 48 \times 35 \cos 80^{\circ} \\ & =3529-583.5 \\ & =2945.5 \\ a & =\mathbf{5 4 . 3} \\ \frac{\sin A}{A} & =\frac{\sin B}{B} \\ \sin B & =\frac{B \sin A}{A}=\frac{48 \sin 80}{54.3}=0.871 \\ B & =\sin ^{-1} 0.871=60.6^{\circ} \\ \theta & =B-40=60.6-40=\mathbf{2 0 . 6} \end{aligned}$ See NCPQ Worked Example 6.1C, 6.1D, 6.1E p 158-160. Note: more examples of these methods can also be found in Oxford Study Buddy Revision and Exam Guide, Volume 1, 2021. Question 13 solution p 292.
17	A	45.62	Correct. See NCPQ p 128 and Worked Example 4.3a p 128 $\begin{aligned} r_{\text {orbit }} & =r_{\text {earth }}+r_{\text {altitude }} \\ & =6.4 \times 10^{6}+400 \times 10^{3}=6.8 \times 10^{6} \mathrm{~m} \\ g & =\frac{G M}{r^{2}} \\ & =\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{\left(6.8 \times 10^{6}\right)^{2}} \\ & =\frac{3.98 \times 10^{14}}{4.624 \times 10^{13}} \\ & =8.6 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ Note: an alternative solution gives $8.7 \mathrm{~m} \mathrm{~s}^{-2}$ as the answer but (A) is still the closest. The solution is: $g_{e}=\frac{G M}{r_{e}^{2}}$ and $g_{o}=\frac{G M}{r_{o}^{2}}$ $\begin{aligned} g_{o} & =g_{e} \times\left(\frac{6.4}{6.4+0.4}\right)^{2} \\ & =9.8 \times 0.886 \\ & =8.7 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$
	B	20.95	Incorrect. Forgot to add the altitude of 400 km .
	C	14.54	Incorrect Forgot to add the radius of the Earth. See NCPQ Worked Example 5.1C(a) p 142 for example.
	D	18.17	Incorrect. Forgot to square the radius of the orbit.
18	A	8.06	Incorrect. It is lossless which means the power in the secondary equals the power in the primary. Note: lossless is not a syllabus term and is not in the Glossary. However, it is logically interpreted. See NCPQ p 228.
	B	48.57	Correct. Current in the secondary is decreased. See NCPQ p 228. $\begin{aligned} I_{p} V_{p} & =I_{s} V_{s} \\ \frac{V_{p}}{V_{s}} & =\frac{I_{s}}{I_{p}}=\frac{n_{p}}{n_{s}}=\frac{4}{6} \\ I_{s} & =I_{p} \times \frac{4}{6} \\ \therefore I_{s} & <I_{p} \end{aligned}$

$\left.\begin{array}{|l|l|l|l|}\hline \text { C } & 28.87 & \begin{array}{l}\text { Incorrect. } V_{\mathrm{S}} \text { will be increased and not decreased. } \\ V_{p} \\ V_{s}\end{array} \frac{n_{p}}{n_{s}}\end{array}, \begin{array}{l}\frac{V_{p}}{V_{s}}=\frac{4}{6} \\ V_{s}=V_{p} \times \frac{6}{4} \\ \therefore V_{s}>V_{p}\end{array}\right]$

Whew! For other worked solutions to EA past papers see seniorphysics.com/ncpq

