QCAA ALTERNATIVE SEQUENCE PHYSICS
 EXTERNAL EXAM - 2023
 MULTIPLE CHOICE QUESTIONS - SOLUTIONS AND EXPLANATIONS

Dr Richard Walding, richard@walding.com

Percentages (\%) will indicate the overall choice by students (QCAA Subject Report 2024)
Copyright. R. Walding 2023. Feel free to copy for class use. Not to be sold.

Q		\%	Reasoning
1	A	3.79	Incorrect. Length contraction changes the length in the direction of travel.
	B	24.42	Incorrect. As the velocity of an object increases the amount of time dilation also increases. That is, clocks aboard the moving object would appear to slow and as the object approached c, the clocks would slow to a standstill. This does not mean the velocity of the object would also slow, only their clocks. That would not prevent the object from attaining a speed of c.
	C*	59.79	Correct. Relativistic momentum approaches infinity as the speed approaches c. The formula $p_{v}=\frac{m v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ shows that as v increases to c , the term below the line decreases to zero thus making p_{v} infinite.
	D	11.37	Incorrect. The inertia (its mass) will not change with increasing speed. The statement that inertia will decrease would mean that less and less force is required to keep accelerating an object and thus it would not be impossible to reach a speed of c.
2	A	11.37	Incorrect. They need to maintain zero acceleration to be running at constant velocity. The question says non-zero acceleration so their velocity would be changing.
	B*	82.11	Correct. The force of the wind would result in a net retarding force opposing motion. They would need to apply an equal and opposite force to return to a net force of zero and hence zero acceleration.
	C	5.05	Incorrect. The work done on them is the energy imparted on their body by the wind. This is outside of their control if they are at constant velocity and the wind speed is not changing. The drag force of the wind depends on the speed of the object relative to the wind and the faster they go the greater the drag. Similarly, the slower they go the less the drag force. So, to reduce the drag force energy imparted to them they would have to run slower. This is not what is wanted, so the option is incorrect.
	D	1.05	Incorrect. Momentum is the product of mass and velocity $(p=m v)$. To reduce momentum you could reduce velocity, but this is the opposite of what the question asks, so is not correct. Alternatively, you could reduce mass. But how? Possibly by taking off your shoes. This is valid but is not the best answer, so this option is incorrect.
3	A*	83.37	Correct. Four half-lives as shown by this progression from 16 g to 1 g in four steps: $16 \underset{1}{\rightarrow} 8 \underset{2}{\rightarrow} 4 \underset{3}{2} \underset{4}{2} 1$ Alternatively: $\begin{aligned} & N=N_{0}\left(\frac{1}{2}\right)^{n} \\ & 1=16\left(\frac{1}{2}\right)^{n} \end{aligned}$

			$\begin{aligned} & \log _{10}\left(\frac{1}{16}\right)=n \times \log _{10}\left(\frac{1}{2}\right) \\ & n=\frac{-1.2}{-0.3}=4 \text { half lives } \end{aligned}$
	B	3.58	Incorrect. There are 5 different amounts of nuclides but only 4 steps.
	C	5.89	Incorrect. There are 5 different amounts of nuclides but not 6 steps.
	D	6.74	Incorrect. Used $1 / 2 \times 16=8$
4	A	13.26	Incorrect. This is a part of (Kepler's) first law of planetary motion.
	B	11.37	Incorrect. This is describing the idea that objects tend to move in a straight line (Nowton's first law) but when undergoing circular motion, the object needs a force to pull it towards the centre of the circle. This is not (Kepler's) third law of planetary motion.
	C	19.58	Incorrect. This is (Kepler's) second law of planetary motion.
	D*	54.95	Correct. It equates the gravitational force F_{g} between objects as described by the Law of Universal Gravitation, $F_{g}=\frac{G M m}{r^{2}}$, and the force needed to make an object travel in a circle, $F_{c}=\frac{m v^{2}}{r}$.
5	A	6.11	Incorrect. This is a description of nuclear fusion.
	B	21.89	Incorrect. Electrons are not products of nuclear fission. However, the products of fission often undergo beta negative decay, which is the production of electrons, but this is not in the fission reaction itself. Electrons can be captured by certain nuclei and they cause a proton to turn into a neutron and emit a neutrino.
	C*	43.58	Correct. This is a feature of nuclear fission.
	D	27.79	Incorrect. This is the radioactive decay of a nuclide, not fission.
6	A	22.11	Incorrect. Used 160 m as the distance travelled in the 25 s .
	B*	45.89	Correct. The object moves in a circular motion from Y to Z , half the circumference of a circle: $s=2 \pi \mathrm{r} / 2=(2 \times \pi \times 80) / 2=251 \mathrm{~m}$. Velocity is $v=s / t=250 / 25=10.1 \mathrm{~m} \mathrm{~s}^{-1}$. Centripetal force: $F_{\mathrm{c}}=\frac{m v^{2}}{r}=\frac{6.0 \times 10^{2} \times 10.1^{2}}{80}=7.6 \times 10^{2} \mathrm{~N}$.
	C	20.84	Incorrect. Used 160 m for the radius, not 80 m .
	D	9.89	Incorrect. Did not square the velocity.
7	A	16.63	Incorrect. There is no change in mass as the products are identical to the reactants. However, mass is not always conserved, for example there is often a mass defect in nuclear reactions ($\Delta E=\Delta m c^{2}$). A comment for teachers: Another possible outcome of an electron and positron annihilation is a pair of photons (zero mass), or if they have enough kinetic energy, some heavier particle such as a Z^{0} or some meson. The proposed International Linear Collider would use electron-positron collisions to produce Higgs bosons, H^{0}, with a rest mass around 125,000 times more than the mass of the incoming particles.

	B	5.05	Incorrect. Didn't square the t, and left out the negative sign on -1.3 . $\begin{aligned} s & =(1.3 \pm 0.2) \times 7+203 \pm 2 \\ s & =9.1 \pm 1.4+203 \pm 2 \\ s & =212.1 \pm 3.4 \\ s_{\max } & =215.5 \mathrm{~m} \\ s_{\min } & =208.7 \mathrm{~m} \end{aligned}$
	C	8.63	Incorrect. Didn't square the t. $\begin{aligned} s & =(-1.3 \pm 0.2) \times 7+203 \pm 2 \\ s & =-9.1 \pm 1.4+203 \pm 2 \\ s & =193.9 \pm 3.4 \\ s_{\max } & =197.3 \mathrm{~m} \\ s_{\min } & =190.5 \mathrm{~m} \end{aligned}$
	D*	79.79	Correct. The value must be between 127.5 and 151.1 m . $\begin{aligned} s & =(-1.3 \pm 0.2) \times 7^{2}+203 \pm 2 \\ s & =-63.7 \pm 9.8+203 \pm 2 \\ s & =139.7 \pm 11.8 \\ s_{\max } & =151.2 \mathrm{~m} \\ s_{\min } & =127.5 \mathrm{~m} \end{aligned}$ Note: the question wrongly uses 'deceleration' to mean 'negative acceleration'. The object in this case is accelerating (probably down an incline) in the negative direction. It is speeding up therefore it is not 'decelerating'.
10	A*	34.95	Note: This question was identified by QCAA as being outside the scope of AS Unit 1 and Unit 2, so all students were awarded a 1 mark for this question. Correct. $\begin{aligned} & \lambda=\frac{b}{T}=\frac{2.898 \times 10^{-3}}{6040}=4.798 \times 10^{-7} \mathrm{~m} \\ & f=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{4.798 \times 10^{-7}}=6.3 \times 10^{14} \mathrm{~Hz} \end{aligned}$ A comment for teachers. The answer above uses Wien's law which gives the maximum of the spectral distribution of blackbody radiation parametrized by wavelength. However, the question is about the frequency of the maximum not the wavelength. In the solution above the maximum wavelength is determined and then converted to frequency using $f=c / \lambda$. The problem is that the shape of this distribution is very different if you plot it as a function of wavelength compared to plotting it as a function of frequency. In particular, the location of the peak is different. The frequency of maximum energy density is obtained by locating the maxima of the Planck distribution with respect to frequency is a different formula: $f_{\text {peak }}=5.8789 \times 10^{10} \times T=3.55 \times 10^{14} \mathrm{~Hz}$

			necessarily practical, so the option remains correct. Remember that the best answer should be selected not the one that could have some validity.
B	19.16	Incorrect. Fusion requires two light nuclei to fuse together, and in this case the total mass is 5.02 amu so they can be considered light. However, reactions involving nuclides up to about Fe-56 release energy so the mass of products will be less than reactants. In this case the mass of the products (10.08 amu) is greater than that of the reactants (10.05 amu). This option doesn't meet that criterion, so it is incorrect.	
C	26.11	Incorrect. Fusion requires two light nuclei to fuse together, that is, with a mass less than A comment for teachers: There may be rare cases where light nuclei can fuse without releasing energy, so it may have some validity but is not the best option.	
occur. There may be rare cases where heavy nuclei can fuse, so it may have some			
validity but is not the best option.			

			the tunnel is 95 m , so the train, which appears shorter than 95 m , is thus shorter than the tunnel. Here is an example if the speed was 0.8 c .		
				$1^{\text {st }}$ observer on train	$2^{\text {nd }}$ observer at tunnel
			Velocity	$\mathrm{v}=0.8 \mathrm{c}$	$\mathrm{v}=0.8 \mathrm{c}$
			Train	$\mathrm{L}_{0}($ train $)=95 \mathrm{~m}$	L (train) $=76 \mathrm{~m}(<95 \mathrm{~m})$
			Tunnel	$\mathrm{L}($ tunnel) $=95 \mathrm{~m}$	$\mathrm{L}_{0}($ tunnel $)=120 \mathrm{~m}(>95 \mathrm{~m})$
17	A	22.11	Incorrect. The particle has to be stationary in its own frame of reference (by definition). It is moving relative to the detector's frame of reference.		
	B	4.84	Incorrect. The particle is moving relative to the detector so is moving relative to the detector's frame of reference.		
	C*	67.37	Correct. The time of an event is longer (dilated) if the event occurs in a frame of reference moving relative to the observer. The detector sees the particle as moving so measures time in the particle's frame as being dilated (longer).		
	D	5.26	Incorrect. The detector signals the detection of the particle irrespective of its speed. If the particle strikes the detector it is 'present'; if it has already decayed it will not strike the detector.		
18	A*	58.53	Correct.		$\begin{aligned} & =\mathrm{mg} \sin \theta \\ & =20 \times 9.8 \times \sin 35^{\circ} \\ & =112 \mathrm{~N} \\ & \text { et }=112-40 \\ & =72 \mathrm{~N} \\ & =\frac{F_{\text {net }}}{m}=\frac{72}{20}=3.6 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$
	B	21.89	Incorrect. Did not subtract friction.		
	C	10.11	Incorrect. Used $\cos \theta$ instead of $\sin \theta$		
	D	8.21	Incorrect. Added the forces instead of subtracting them.		
19	A	20.63	Incorrect. Didn't convert mass in $a m u$ to $k g$:$\begin{aligned} & \Delta E=\Delta m c^{2} \\ & =0.0052 \times\left(3 \times 10^{8}\right)^{2} \\ & =4.7 \times 10^{14} \mathrm{~J} \end{aligned}$		
	B*	45.89	Correct.		

			$=7.8 \times 10^{-13} \mathrm{~J}$
	C	22.53	Incorrect. Didn't square c. $\begin{aligned} \Delta m & =0.0052 \mathrm{amu} \\ & =0.0052 \mathrm{amu} \times 1.66 \times 10^{-27} \\ & =8.632 \times 10^{-30} \mathrm{~kg} \\ \Delta E & =\Delta m c^{2} \\ & =8.632 \times 10^{-30} \times 3 \times 10^{8} \\ & =2.6 \times 10^{-21} \mathrm{~J} \end{aligned}$
	D	10.32	Incorrect. Didn't convert mass in $k g$ to energy in J (didn't use $\Delta E=\Delta m c^{2}$): $\begin{aligned} \Delta m & =0.0052 \mathrm{amu} \\ & =0.0052 \mathrm{amu} \times 1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{amu} \\ & =8.632 \times 10^{-30} \mathrm{~kg} \end{aligned}$
20	A	16.84	Incorrect. Used the change in potential energy ($1.6-0.3=1.3 \mathrm{~J}$), and didn't rearrange the 0.6 kg correctly. $\begin{aligned} \Delta E_{p} & =\Delta E_{k} \\ \Delta E_{p} & =\frac{1}{2} m v^{2} \\ 1.6-0.3 & =\frac{1}{2} \times 0.6 \times v^{2} \\ v & =\sqrt{1.3 \times 2 \times 0.6} \\ & =1.2 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$
	B	28.84	Incorrect. Just used the maximum value of potential energy as the maximum velocity.
	C*	44.42	Correct. $\begin{aligned} \Delta E_{p} & =\Delta E_{k} \\ \Delta E_{p} & =\frac{1}{2} m v^{2} \\ 1.6 & =\frac{1}{2} \times 0.6 \times v^{2} \\ v & =\sqrt{\frac{1.6 \times 2}{0.6}} \\ & =2.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$
	D	8.42	Incorrect. Didn't take the square root to get v. $\begin{aligned} 1.6 & =\frac{1}{2} \times 0.6 \times v^{2} \\ v & =\frac{1.6 \times 2}{0.6} \\ & =5.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$

Whew! For other worked solutions to EA past papers see seniorphysics.com/ncpq

