Getting to know the Physics Formula and data book

By Dr Richard Walding – author New Century Physics for Queensland (OUP) 3rd ed 2019

UNIT 3 TOPIC 1	MOTION	
Formula in booklet	Description	Explanation of symbols
Projectiles		
$v_y = u_y + gt$	Final vertical velocity	$v_y =$ final velocity in the vertical (or y) direction $u_y =$ starting velocity in the vertical (or y) direction g = acceleration due to gravity in metres per second squared ($m s^{-2}$). Near the surface of Earth g = -9.8 $m s^{-2}$
$s_y = u_y t + \frac{1}{2}gt^2$	Final vertical displacement	s_y = displacement in the vertical (y) direction
$v_y^2 = 2gs_y + u_y^2 \text{ or}$ $v_y^2 = u_y^2 + 2gs_y$	Final vertical velocity	v_y = final velocity in the vertical (or y) direction u_y = starting velocity in the vertical (or y) direction
$v_x = u_x$	Final horizontal velocity is same as initial horizontal velocity	v_x = final velocity in the horizontal (or x) direction u_x = starting velocity in the horizontal (or x) direction
$s_x = u_x t$	Final horizontal displacement	s_x = displacement in the horizontal (x) direction (also called the 'horizontal range')
$u_y = u \sin \theta$	Not in formula book	u_y = vertical component of initial velocity
$u_x = u\cos\theta$	Not in formula book	u_x = horizontal component of initial velocity
Inclined planes		
$F_g = mg$	Gravitational force (also called <i>weight</i> F_w in Unit 2)	F_g = gravitational force (weight) in newtons (N) m = mass of object in gravitational field in kilograms (kg) g = gravitational field strength in newtons per kilogram ($N kg^{-1}$), or acceleration due to gravity in metres per second squared ($m s^{-2}$)
Circular motion		
$v = \frac{2\pi r}{T}$	Centripetal velocity	v = velocity of revolving object in metres per second ($m s^{-1}$) r = radius of orbit of revolving object in metres (m) T = period of revolution in seconds (s)
$a_c = \frac{v^2}{r}$	Centripetal acceleration	a_c = centripetal acceleration in metres per second squared (ms^{-2}) v = velocity of revolving object in metres per second (ms^{-1}) r = radius of orbit of revolving object in metres (m)

$F_{net} = \frac{mv^2}{r}$	Centripetal force	F_{net} = centripetal force in newtons (N), also F_c . m = mass of revolving object in kilograms (kg) v = velocity of revolving object in metres per second ($m s^{-1}$)
Orbits		
$F_g = \frac{GMm}{r^2}$	Newton's Universal law of gravitation	F_g = gravitational force between two objects in newton (N) G = Gravitational constant (see table) M, m = mass of objects in kilograms (kg) r = radial distance between objects in metres (m)
$g = \frac{F}{m} = \frac{GM}{r^2}$	Gravitational field strength as measured by force (F) acting on a mass (m) in the field, or by radial distance (r) from centre of mass of local astronomical body of mass (M)	g = gravitational field strength in newtons per kilogram ($N kg^{-1}$) or metres per second squared ($m s^{-2}$) m = mass of object in field in kilograms (kg) M = mass of local astronomical body s in kilograms (kg) G = Gravitational constant (see table) r = radial distance from centre of astronomical body in metres (m)
$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$	Law of periods. Kepler's ratio T^2 / r^3 is constant for all planets orbiting a central star of mass M. This formula is derived from Newton's laws of gravity and centripetal force.	T = period of revolution about a central star in seconds (s) r = radius of orbit in metres (m) G = Gravitational constant (see table) M = mass of central star in kilograms (kg)
UNIT 3 TOPIC 2	ELECTROMAGNETISM	
Electrostatics		
$F = \frac{1}{4\pi\varepsilon_o} \frac{Qq}{r^2}$	Coulomb's Law – gives the force between two charged objects whose centres are the distance <i>r</i> apart	$F = \text{force between charged particles}$ $\frac{1}{4\pi\varepsilon_o} = \text{Coulomb's constant}$ $Q, q = \text{electric charge on particle in coulomb (C)}$ $r = \text{radial distance between charges in metres (m)}$
$E = \frac{F}{Q} = \frac{1}{4\pi\varepsilon_o} \frac{q}{r^2}$	Electric field strength as measured by force acting on a charged object; or by radial distance from the centre of a charged object	$E = \text{electrical field strength in newtons per coulomb (} NC^{-1})$ $F = \text{force acting on a charged particle in an electric field}$ $q = \text{electric charge on particle in coulombs (C)}$ $\frac{1}{4\pi\varepsilon_o} = \text{Coulomb's constant, } k = 9 \times 10^9 Nm^2 C^{-2}.$ $r = \text{radial distance from a charge in metres (m)}$
$V = \frac{\Delta U}{q}$	Electric potential difference when work is	V = electric potential in volts (V)

	done on or by a charge q in an electric field	ΔU = change in electric potential energy (work done) in joules (J) q = electric charge on particle in coulombs (C)
$B = \frac{\mu_{\circ}}{2\pi} \times \frac{I}{r}$	Field about a wire (carrying a current <i>I</i> , at a point <i>r</i> metres measured radially from the wire)	B = magnetic field strength in tesla (T) $\mu_{\circ} = \text{magnetic constant (see table of constants)}$ I = current in the wire in ampere (A) r = radial distance to wire in metres (m) $\mu_{\circ} / 2\pi = \text{electromagnetic constant}$ $k = 2 \times 10^{-7} T m A^{-1}$
$B=\mu_{\circ}nI$	Field inside a solenoid	B = magnetic field strength in tesla (T) μ_{\circ} = magnetic constant
$F = BIL \sin \theta$	Force on a wire (use with Fleming's LH rule)	F = force on a charged particle in newton (N) B = magnetic field strength in tesla (T) I = current in the wire in ampere (A) L = length of wire in the magnetic field in metres (m) $\theta = \text{angle between wire or direction of travel and}$ the magnetic field direction in degrees (°)
$F = qvB\sin\theta$	Force on a charged particle	F = force on a charged particle in newton (N) q = electric charge on particle in coulomb (C) $v =$ velocity of particle in metres per second ($m s^{-1}$) B = magnetic field strength in tesla (T) $\theta =$ angle between the direction of travel of the charged particle and the magnetic field direction in degrees (°)
$\phi = BA\cos\theta$	Flux in a loop	ϕ = magnetic flux in weber
$\operatorname{emf} = -\frac{n\Delta(BA_{\perp})}{\Delta t}$	Faraday's Law of Induction (1 st version)	emf = electromotive force n = number of turns (loops) of wire in a coil B = magnetic field strength A_{\perp} = area of loop perpendicular to magnetic field Δt = time elapsed
$\operatorname{emf} = -n \frac{\Delta \phi}{\Delta t}$	Faraday's Law of Induction (2 nd version)	emf = electromotive force ϕ = magnetic flux in weber Δt = time elapsed
$I_{\rm p}V_{\rm p}=I_{\rm s}V_{\rm s}$	transformer – energy conservation relationship	I_p = current in primary coil I_s = current in secondary coil V_p = voltage across primary coil V_s = voltage across secondary coil
$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$	transformer formula (for ideal transformer)	$n_{\rm p}$ = number of turns on primary coil $n_{\rm s}$ = number of turns on secondary coil
UNIT 4 TOPIC 1	SPECIAL RELATIVITY	

	time dilation	t = relativistic or dilated time interval
$t = \frac{t_0}{1}$		t_0 = proper time interval
$t = \frac{t_0}{\sqrt{1 - v^2 / c^2}}$		v = speed of frame of reference relative to observer
		c = speed of light in a vacuum
$L = L_o \sqrt{1 - v^2 / c^2}$	contraction of length	L = contracted or relativistic length (as measured by observer moving relative to object being measured
		L_0 = proper length (as measured by observer at rest
		to the object being measured)
$p_{v} = \frac{m_{0}v}{\sqrt{1 - v^{2}/c^{2}}}$	relativistic momentum	p_v = relativistic momentum as measured by person
		at rest with respect to object being observed
$\Delta E = mc^2$	mass-energy equivalence	ΔE = energy in joules (J) for a given amount of mass
	relationship	m_0 = rest mass in kilograms (kg) converted to an
		equivalent amount of energy
		c = speed of light in a vacuum (see table of constants)

UNIT 4 TOPIC 2	QUANTUM PHYSICS	
	Wien's displacement law	λ_{max} = wavelength at which maximum intensity
b	1	occurs for blackbody radiation
$\lambda_{\max} = \frac{b}{T}$		b = Wien's displacement constant (see QCAA
		Formula and Data book table of constants)
	black body radiation	E = energy of a photon in joules (J)
ha	5	h = Planck's constant
$E = hf = \frac{hc}{\lambda}$		f = frequency of emitted light (photon)
λ		c = speed of light in a vacuum
		λ = wavelength of light
	kinetic energy and work	$E_{\rm k}$ = maximum kinetic energy of photo-ejected
$E_k = hf - W$	function	electrons in joules (J)
$\mathbf{L}_{k} = ng$ m		f = frequency of incident light in hertz (Hz)
		W = work function of electron in joules (J)
h	photon momentum	λ = wavelength of light
$\lambda = \frac{h}{n}$		h = Planck's constant
p		p = momentum of photon
	Electron wavelength and	n = atomic energy level
	radius of electron for the	λ = wavelength of electron in (Bohr) standing wave
$n\lambda = 2\pi r$	steady state in a hydrogen	in metres (m)
	atom	r = (Bohr) radius of electron orbit in metres (m)
		$2\pi r$ = circumference of electron orbit in metres (m)
	Angular momentum	mvr = angular momentum of electron in atom
	(quantised angular momentum of electron in	(usually given symbol 'L') in $kg m^2 s^{-1}$
nh	atom)	m = mass of electron in kilograms (kg)
$mvr = \frac{nh}{2\pi}$		v = velocity of electron in atom in metres per second
		$(m s^{-1})$
		n = atomic energy level
		h = Planck's constant
	Rydberg's equation (for	λ = wavelength of light in metres (m)
$1 - P \begin{pmatrix} 1 & 1 \end{pmatrix}$	hydrogen spectrum)	R_H = Rydberg's constant (see table of constants)
$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$		$n_f = \text{final energy level}$
		$n_i = \text{initial energy level}$
F	Atomic energy level	
$E_n = \frac{E_1}{n^2}$	diagram (for hydrogen or	E_n = energy of electron in energy level <i>n</i> in joules (J)
11	other one-electron atom)	E_1 = energy of electron in energy level 1 in joules
(not in QCAA Formula and Data		(J)
book)		n = atomic energy level
,		
UNIT 4 TOPIC 2	STANDARD MODEL	
$B = \frac{1}{3}(n_q - n_{\overline{q}})$	Baryon number	B = baryon number
(in NCPQ student		n_q = number of quarks
book syllabus		$n_{\overline{a}} =$ number of antiquarks
glossary but not in		q
QCAA Formula and		
Data book		
$L = (n_l - n_j)$	Lepton number	L = lepton number
(in NCPQ textbook		$n_1 =$ number of leptons
and syllabus glossary		$n_{\tilde{i}}$ = number of antileptons
but not in QCAA		

Formula and Data	
book)	