QCAA ALTERNATIVE SEQUENCE PHYSICS EXTERNAL EXAM – 2020

MULTIPLE CHOICE QUESTIONS - SOLUTIONS AND EXPLANATIONS

Dr Richard Walding, waldingr49@gmail.com

Copyright. R. Walding 2025. Feel free to copy for class use. Not to be sold.

Q		Reasons
1	A	Incorrect. Didn't convert nm to m. $f = \frac{c}{\lambda} = \frac{3 \times 10^8}{537} = 5.59 \times 10^5 \text{ Hz}$
	В	Incorrect. Rearranged formula incorrectly and didn't convert nm to m. $f = c\lambda = 3 \times 10^8 \times 537 = 1.61 \times 10^{11} \text{Hz}$
	*C	Correct.
		$f = \frac{c}{\lambda} = \frac{3 \times 10^8}{537 \times 10^{-9}} = 5.59 \times 10^{14} \mathrm{Hz}$
	D	Incorrect. Rearranged formula incorrectly. $f = \frac{\lambda}{c} = \frac{537 \times 10^{-9}}{3 \times 10^8} = 1.79 \times 10^{15} \text{ Hz}$
2	A	Incorrect. Said $Q = I \times q_e = 3 \times 1.6 \times 10^{-19} = 4.8 \times 10^{-19} \text{ C}$
	В	Incorrect. Said $Q = \frac{I}{t} = \frac{3}{3 \times 60} = 1.7 \times 10^{-2} \text{ C}$
	С	Incorrect. Didn't convert minutes to seconds.
	*D	Correct. $Q = It = 3 \times (3 \times 60) = 540 \text{ C} = 5.4 \times 10^2 \text{ C}$
3	A	Incorrect as it uses mT to mean 10 ⁻⁴ T instead of 10 ⁻³ T.
	*B	Correct.
		$emf = -n \frac{\Delta(BA_{\perp})}{\Delta t}$
		
		where,
		n = 1(single loop)
		$A = \pi r^2$
		$= \pi \times (0.04)^2 = 0.005m^2$
		$\Delta B = 3.00mT - 1.5mT = 1.5mT = 1.5 \times 10^{-3}T$
		$emf = 1 \times \frac{(1.5 \times 10^{-3}) \times (0.005)}{0.600} = 1.26 \times 10^{-5} V$
	С	Incorrect as it leaves the radius as 4 cm instead of 0.04 m.
	D	Incorrect as it uses the radius as 4 cm rather than 0.04 m, and leaves out the 10 ⁻³ for the milli (m) in mT.
4	A	Incorrect. Didn't convert g to kg, and used T_f as ΔT
	В	Incorrect. Didn't convert g to kg
	С	Incorrect. Used T_f as ΔT
	*D	Correct.

		$Q = mc\Delta T$ $c = \frac{Q}{m\Delta T} = \frac{340}{10.2 \times 10^{-3} \times (84 - 21)} = 529 = 5.29 \times 10^{2} \text{J kg}^{-1} \text{K}^{-1}$
5	A	Incorrect. Refers to conservation of electric charge
	В	Incorrect. Based on Oersted's equation
	*C	Correct. Lenz's law states that the direction of an induced electric current always opposes the change in the circuit or the magnetic field that produces it.
	D	Incorrect. Snell's Law for refraction of light.
6	*A	Correct.
		$R_{4\Omega+2\Omega} = 4 + 2 = 6\Omega$
		1 - 1 + 1 - 1
		$\frac{1}{R_{parallel}} = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$
		$R_{parallel} = 3 \Omega$
		$R_T = R_{parallel} + 3\Omega = 3 + 3 = 6\Omega$
		$I_T = \frac{V_T}{R_T} = \frac{12}{6} = 2 \text{ A}$
		$I_{2\Omega} = 1$ A [as half the current goes through each equal branch]
		$V_{2\Omega} = I_{2\Omega} R_{2\Omega} = 1 \times 2 = 2 \text{ V}$
	В	Incorrect. There is a 6 V drop across the parallel branch and the answer assumes there is 3 V drop across each branch and the 2 Ω resistor.
	С	Incorrect. Assumed the total current of 2 A was going through the 2 Ω resistor, hence a 4 V drop.
	D	Incorrect. There is a 6 V drop across the parallel branch and the answer assumes there is a 6 V drop across 2 Ω resistor.
7	*A	Correct. A photon is also called quanta and defined as the smallest discrete packets of energy of electromagnetic waves, as proposed by Einstein in 1904.
	В	Incorrect. Option (B) refers to a form of emr at a particular spectral region (high frequency) and thus does not meet the criterion "any form".
	С	Incorrect. Refers to subatomic particles which admittedly can produce electromagnetic radiation when oscillating or accelerating.
	D	Incorrect. Refers to subatomic particles which admittedly can produce electromagnetic radiation when oscillating or accelerating.
8	A	Incorrect. Left the angles in degrees, plus other mistakes. Said $n_{1\to 2} = \frac{1}{2} \times \frac{39}{60} = 0.32$
	В	Incorrect. Use the ratio upside down. Said $n_{1\to 2} = \frac{\sin \theta_2}{\sin \theta_1} = \frac{\sin 39^\circ}{\sin 60^\circ} = 0.73$

	*C	-i (0°
	. C	$n_{1\to 2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{\sin 60^{\circ}}{\sin 39^{\circ}} = 1.37$
		$\sin \theta_2 \sin 39^\circ$
		or
		Correct. $n_1 \sin \theta_1 = n_2 \sin \theta_2$
		$n_2 = \frac{n_1 \sin \theta_1}{\sin \theta_2}$
		$\sin \theta_2$
		$=\frac{1.00\times\sin 60^{\circ}}{\sin 39^{\circ}}=1.37$
		$-\frac{\sin 39^{\circ}}{\sin 39^{\circ}}$
	D	Incorrect. Left the angles in degrees. Said $n_{1\to 2} = \frac{60}{30} = 1.53$
		39
9	A	Incorrect. Kinetic energy increases ONLY while temperature increases
	*B	Correct. Internal energy is the sum of $E_{P(micro)}$ and $E_{k(micro)}$ and the sum of these increases
		as the ice is heated.
	С	Incorrect. Potential energy increases ONLY during a phase change
	D	Incorrect. Chemical energy increases only when there is a bond rearrangement (making or
		breaking)
10	Α	Incorrect. This only applies when there is a temperature change, and this is not
		equilibrium.
	*B	Correct. This is the definition of thermal equilibrium similar to that used in OUP <i>Physics</i>
		for Queensland (2025): thermal equilibrium is a state in which there is no net exchange of
		thermal energy between any components of a system; the components have the same
		temperature and the same average kinetic energy (Glossary).
	С	Incorrect. This is true for a system approaching equilibrium, NOT at equilibrium.
	D	Incorrect. There will be an exchange of thermal and kinetic energy as the system
		approaches equilibrium, not not at equilibrium
11	A	Incorrect. This looks like some non-linear device whose resistance gets less as the current
	*B	increases. For example, a diode
	С	Correct. A linear V/I graph is a characteristic of a ohmic resistor
		Incorrect. This looks a resistance wire that gets hot as the current increases. This means an increase in resistance with temperature
	D	Incorrect. This case represents a device that has a constant current as voltage increases. It
	-	is thus non-ohmic
12	*A	Correct. The displacement from the equilibrium position to the crest is the amplitude.
12	В	Incorrect. This is the particle's displacement from the bottom of the trough to the crest of
	-	the wave.
	С	Incorrect. This is just half the period (time)
	D	Incorrect. This is just the period of the wave.
13	A	Incorrect. Option (A) does not describe any model of the atom, but rather defines it, and it
13	11	predates Rutherford.
	*B	Correct. Option (B) accurately describes Rutherford's model of the atom.
	C	Incorrect. Option (C) is J. J Thompson's "plum pudding model" of the atom
	D	Incorrect. Option (D) is the Bohr model of the atom
14	A	Incorrect. This is the shape of the A pulse after moving along another division. The B
1.4	11	pulse is not shown.
	В	Incorrect. This is the shape of the B pulse after moving along another division. The A
	"	pulse is not shown.
	*C	Correct. The amplitudes of the two pulses is added. This is superposition
	D	Incorrect. The pulses do not cancel as they have different amplitudes
<u></u>	ע	mooreed. The pulses do not cancer as they have different amplitudes

15	A	Incorrect. Surface waves are mechanical waves that travel along an interface between two
		different media, such as wind-driven ocean waves at the surface of water or seismic
		surface waves at the Earth's surface. The term 'surface waves' is not a syllabus term and
		should be discounted. In this question there is no mention of a second medium
	В	Incorrect. Sound is a longitudinal wave
	*C	Correct. Sound is a longitudinal wave
	D	Incorrect. Sound is not an electromagnetic wave because it is not caused by oscillating
		electric charges
16	A	Incorrect. Wrongly calculated this as:
		$n^{0}/n = \frac{E_{out}}{n}$
		$n\% = \frac{E_{out}}{E_{in}}$
		$E_{\rm cut} = 1290$
		$E_{in} = \frac{E_{out}}{n\%} = \frac{1290}{43} = 300 \text{J}$ Incorrect Used wrong formula:
	В	Incorrect. Used wrong formula:
		E_{in}
		$\eta\% = \frac{m}{E} \times 100$
		$\frac{E_{out}}{1200 \times 42}$
		$\eta\% = \frac{E_{in}}{E_{out}} \times 100$ $E_{in} = \frac{E_{out} \times \eta\%}{100} = \frac{1290 \times 43}{100} = 555 \text{ J}$
	*<	··· 100 100
	*C	Correct.
		$\eta\% = \frac{E_{out}}{2} \times 100$
		$\eta\% = \frac{E_{out}}{E_{in}} \times 100$
		$E_{in} = \frac{E_{out}}{\eta\%} \times 100 = \frac{1290}{43} \times 100 = 3000 \mathrm{J}$
		$E_{in} - \frac{100}{\eta \%} \times 100 - \frac{30003}{43}$
	D	Incorrect. Used wrong formula:
		$\eta\% = rac{E_{in}}{E_{out}}$
		$E_{in} = E_{out} \times \eta\% = 1290 \times 43 = 55470 \mathrm{J}$
17	٨	
17	A B	Incorrect. Option (A) does not fully describe a magnetic field Incorrect. Option (B) describes an electrostatic field
	С	Incorrect. Option (C) describe an electrostatic field
	*D	Correct. A magnetic field is defined as a region of space where a magnetic force is
	ב	experienced.
18	*A	•
		Correct. $I = \frac{Q}{t} = \frac{13 \text{ C}}{1 \text{ s}} = 13 \text{ A}$
	D	v 15
	В	Incorrect. The rate of movement of charge carriers is electric current and when charge is
	С	in coulomb, and time in seconds, the rate is in ampere A not voltage V The rate of movement of charge carriers is electric current and when charge is in coulomb,
		and time in seconds, the rate is in ampere A not ohms Ω
	D	The rate of movement of charge carriers is electric current and when charge is in coulomb,
		and time in seconds, the rate is in ampere A not power W
19	*A	Correct.
		$emf = -n\frac{\Delta\phi}{}$
		Δt
		$36 = 24 \times \frac{0.3}{}$
		t
		$emf = -n\frac{\Delta\phi}{\Delta t}$ $36 = 24 \times \frac{0.3}{t}$ $t = 0.2s$
I .		

		Option B uses the equation upside down: $t = (36 \times 0.3)/45$
	В	Incorrect. Option B uses the equation upside down: $t = (36 \times 0.3)/45$
	C	Incorrect. Option C uses $t = 24/(36 \times 0.3)$
	D	Incorrect. Option D uses $t = 36/(24 \times 0.3)$
20	A	Incorrect. Option A uses $f_o = W/h$ and has left out the v_e
	В	Incorrect. Option B is incorrect as it uses $E_k = hf_o + W$
	С	Incorrect. Option C is incorrect as it left out the W value.
	*D	Correct.
		$E_k = hf_0 - W$
		Find E_k and then substitute to find f_0
		m = almost zero, so ignore
		$E_k = \frac{1}{2} m v^2$
		$=0.5\times9.109\times10^{-31}\times(1.9\times10^{6})^{2}$
		$=1.644\times10^{-18} J$
		Convert W to Joules, $W(J) = 4.73 \times (1.60 \times 10^{-19}) = 7.568 \times 10^{-19} J$
		$f_0 = \frac{E_k + W}{h}$
		$=\frac{1.644\times10^{-18}+7.568\times10^{-19}}{6.626\times10^{-34}}$
		$-{6.626\times10^{-34}}$
		$=3.62\times10^{15}$ Hz