NCPQ 3ed. U3&4. Corrections still to be made to student book (SB) and online obook files. Richard Walding 5 February 2025

	UNIT 3&4 STUDENT BOOK						
Page	Correction						
SB p218	Correction Challenge 8.2B. Change "hand" to hands"						
SB p210 SBp229 Q3							
(c	3 Explain whether it is true to say that a step-up transformer steps-up the voltage but it also steps-down the number of turnscurrent						
	UNIT 3&4 OBOOK						
Chapter 1 Revision Q	Rev Q 13(b). The second part of the answer was not provided. Here is the full answer for part (b): b velocity of the ball after 1.0 s						
	v_{y} after $t = 1.0 \ s$						
	$v_y = u_y + gt$						
	$=10.26 + -9.8 \times 1.0$						
	$=+0.46 \text{ m s}^{-1}$						
	$v_{\rm x} = 28.19 \text{ m s}^{-1}$						
	θ 28.19 m s ⁻¹						
	$v = \sqrt{(28.19)^2 + (0.46)^2} = 28.19 \text{ m s}^{-1}$						
	$\theta = tan^{-1}(\frac{0.46}{28.19}) = 0.93^{\circ}$ to the horizontal						
Chapter 8	Chapter 8, CYL8.2, Q6						
CYL Solutions	Delete existing answer.						
	A reasoned response to this question is as follows:						
	Ng Time						
	The positively charged particle is moving relative to the coil so it has a magnetic field around the axis of travel with the same orientation as the wires in the coil. As it passes through the coil the particle's magnetic flux lines cut the wires to generate an EMF as given by Fleming's right-hand rule. The total magnetic flux is constant so the EMF would increase as the particle goes from the start of the tube to the middle where it would reach a maximum, and then decrease to zero as it leaves the other end. At no time would the EMF go negative. The correct answer comes from physicist Ian McCulloch (Feb 2024):						
	There is no EMF, because the field is pointing in the wrong direction. Solar wind, for example, ends up mainly following along the direction of magnetic field lines because any						

	motion perpendicular to the field line results in a Lorentz force and a spiral motion around the field line. The result is the motion is primarily in the direction of the field line, where there is no force. Similarly, a charged particle moving down the axial direction of a solenoid can't induce an EMF.							e, where
Chapter 8 Revision Q	Revision Question 27(b) should read: (b) The solenoid experiences a S-pole moving towards its left hand end. By Lenz's Law a current is induced in the solenoid to generate a S-pole at its left hand end to oppose (prevent) the S-pole approaching. To do this, a current is induced in the solenoid flowing down the front (from A to B through the voltmeter, or from B to A through the solenoid).							
U3&4 obook	Practical worl The uncertain 20° 30° 40° 45° 50° 60° 70° 80°	ty column ir $\delta = \pm 0.$ $\delta = \pm 0.$	n the table is m) 02 m 04 m 04 m 12 m 04 m 13 m 07 m	ed p not	rojection and fully correct.	distance. It should hav	ve these value	es.
U3&4 obook	80° $\delta = \pm 0.14 \text{ m}$ Practical worksheet answers. 2.3 Parallel component on an inclined plane. The table has the masses in grams instead of kg. You could just change the headings for the th columns to g instead of kg.Hanging mass (m)Hanging mass (m)							
	<i>m</i> _{up} (kg) 121.5	m _{down} (kg) 91.0	<i>m</i> _{av} (kg) 106.3	to	<i>m</i> _{up} (g) 121.5	m _{down} (g) 91.0	<i>m</i> _{av} (g) 106.3	
U3&4 obook	Or you could change the values to <i>kg</i> by dividing by 1000. Sorry about that. Assess Quizzes Chapter 2 Consolidate Q4 Answer is "Remains the same" NOT "be greater but less than double"							
U 3&4 obook	Assess Quizzes Chapter 3 Extend Q5 Question should read: Determine what distance the coin should be placed from the centre so at the new velocity the coin will just begin to slip. [correct answer] 32 cm [incorrect answer] 2 cm [incorrect answer] 16 cm [incorrect answer] 24 cm This is how it reads at the moment (20 Oct 2022):							

	5 Determine what distance the coin should be shifted towards the centre so that the coin will just begin to slip at the new velocity.
	a. 24 cm
	b. 0 32 cm
	c. 🕕 16 cm
	d. O 2 cm < CORRECT ANSWER
U 3&4 obook	U3&4 Assess Quizzes Chapter 13 Support Q6. Change "According to the Standard Model, the fundamental particles of an atom include" to According to the Standard Model, the elementary particles of an atom are
U 3&4 obook	U3&4 Assess Quizzes Chapter 13 Consolidate Q1. Change "fundamental" to "elementary"