Errata for Exam Excellence Questions – from Dr Richard Walding 13 October 2022

U3&4 SWB	Correction
Ch 1 Q8	Add (b) Determine how far horizontally from a point directly below where the raft was
	dropped, the raft will hit the water (assuming no air resistance)?
Ch 1 Q8b	Answer (b) 571 m
Ch 2 Q10 (a)	Answer 0.083 m s ⁻²
Ch 3 Q9 (b)	Answer 7.35 x 10 ² N
Ch 3 Q9 (c)	Add (c) Calculate the angle of F _S with the horizontal.
Ch 4 Q7	Answer 4.27 x 10 ³⁹ N
Ch 6 Q3	Question page 52 should read "Two suspended spheres are 20.0 cm apart."
Ch 6 Q8	Answer $\overrightarrow{F_Z}$ = 9.74 N up the page
Ch 6 Q9(b)	Answer $a = 3.6 \times 10^{12} m s^{-2}$
Ch 7 Q3	No option is correct. The answer is 677
Ch 8 Q6	Answer 12 Wb
Ch 10 Q6 (a)	Answer 83.55 m
Ch 10 Q7	Change question on page 92 from "Compare this speed, observed from Earth, to that
	observed by an astronaut onboard the spacecraft." To "Determine the distance the space-
	traveller would measure as the distance from the Earth to the star."
Ch 10 Q7	Answer 14.05 ly
Ch 10 Q9	Second last line in solution should read (3 x 10 ⁸) ² . Answer is correct.
Ch 11 Q2	Question on page 87 should have Option B as 4.44 x 10 ⁻¹⁹ J
Ch 11 Q8	Change data in question on p 98 to read " by a $0.157\mu m$ UV light."
Ch 12 Q1	For the question on p 101, change the exponents for all four options to 10 ⁻¹⁹
Ch 12 Q7	Delete 'quantum orbitals' from Figure 3 page 102
Ch 12 Q9	Change the exponents for all values in the Table 1 on page 101 to 10 ⁻¹⁹
Ch 13 Q2	Both (A) and (D) are correct
Ch 14 Q7	This is the answer for Q 8
Ch 14 Q8	This is the answer for Q 9
Ch 14 Q9	This is the answer for Q 7
Ch 14 Q10	(a) (b)
	$\begin{array}{c} \text{Space} \\ \hline \\ \text{Time} \\ \end{array}$
Prac 7.4 page 141	current-carrying wire direction of current force on wire s N direction of magnetic field force on magnets

Worked solutions can be found at: seniorphysics.com/ncpq/swb

Email: Richard Walding (richard@walding.com)