## WORKED SOLUTIONS TO SELECTED PROBLEMS

## for OUP NCPQ Unit 1\&2 "Student Workbook" ISBN 9780190320362

## - from Richard Walding 14 July 2021

Note: the answers and most worked solutions are in the back of the Student Workbook p168-185. The solutions included here are those that have no solutions provided. Enjoy!

## Chapter 0.2

## Data Drill 0.2 b

The maximum and minimum lines of best fit (red and green) are incorrect. They should look like this:


$$
\begin{aligned}
\max \text { gradient } & =\frac{20.0-0}{2.0-0}=10.0 \\
\text { min gradient } & =\frac{18.0-0}{2.0-0}=9.0 \\
\delta x & =\frac{\max -\min }{2}=\frac{10.0-9.0}{2}=0.5 \\
\delta \% & =\frac{\delta x}{x} \times 100=\frac{0.5}{9.568} \\
& =5.2 \%
\end{aligned}
$$

$m=9.6 \pm 0.5 m s^{-1}$
or
$m=9.6 m s^{-1} \pm 5.2 \%$
$v=(9.6 \pm 0.5) t+0.3(t o 1 d . p$.

## Chapter 1 Data Drill

Q1
(a)


Error in the drawing. The graph should not extend back into negative time. It cuts the $y$-axis at about $25^{\circ} \mathrm{C}$ at a time of zero seconds.

The relationship is linear but not direct proportion: $\mathrm{T}=0.1661 \mathrm{t}+22.956{ }^{\circ} \mathrm{C}$
(b)
$\delta_{\text {gradient }}= \pm \frac{\max -\min }{2}= \pm \frac{0.1800-0.1450}{2}= \pm 0.0175^{\circ} \mathrm{C} \mathrm{s}^{-1}$
The y-intercept is $22.956{ }^{\circ} \mathrm{C}$ (however, the question is really asking for the uncertainty in the y-intercept as well):
$\delta_{y \text {-intercept }}= \pm \frac{26.19-21.9}{2}= \pm 1.6^{\circ} \mathrm{C}$

## Chapter 1 Exam Excellence page 13

Q1. Should read "Predict how the ends of the bar.."
Q4. Error in answer. Answer is (B)
Q5. Error in answer. Answer is (B)
Q8(a)

$$
\begin{aligned}
E_{k} & =\frac{3}{2} k T=\frac{3}{2} \times 1.38 \times 10^{-23} \times(273+35) \\
& =6.37 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

Q8(b)

$$
\begin{aligned}
E_{k} & =\frac{1}{2} m v^{2} \\
v & =\sqrt{\frac{2 E_{k}}{m}}=515 m s^{-1}
\end{aligned}
$$

## Chapter 2

## Data Drill 2

(a)

$$
\bar{x}=\frac{35.4+37.2}{2}=36.3^{\circ} \mathrm{C}
$$

(b)

$$
\begin{aligned}
-Q_{L(\text { metal })} & =Q_{G(\text { water })} \\
-m c \Delta T & =m c \Delta T \\
-\frac{50}{1000} \times c_{\text {metal }} \times(36.3-100.0) & =\frac{50}{1000} \times 4180 \times(36.3-23.3) \\
63.7 \times c_{\text {metal }} & =4180 \times 13 \\
c_{\text {metal }} & =853.06 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

## Exam Excellence 2 page 169

Q4. Answer page 169 is wrong. It is (C)

$$
\begin{aligned}
-Q_{L(\text { hot water })} & =Q_{G(\text { tepid })} \\
-m c \Delta T & =m c \Delta T \\
-0.100 \times 4180 \times\left(T_{f}-90\right) & =0.100 \times 4180 \times\left(T_{f}-30\right) \\
-\left(T_{f}-90\right) & =T_{f}-30 \\
2 T_{f} & =120 \\
T_{f} & =60^{\circ} \mathrm{C}
\end{aligned}
$$

Q5. Answer in back of book page 169 is wrong. It is (A)
The liquid range is the sloped line between the $2 \times 10^{5}$ and $4 \times 10^{5} \mathrm{~J}$ marks on the x -axis.

$$
\begin{aligned}
Q & =m c \Delta T \\
\left(4 \times 10^{5}-2 \times 10^{5}\right) & =1 \times c_{\text {substance }}(500-190) \\
2 \times 10^{5} & =c_{\text {substance }} \times 310 \\
c_{\text {substance }} & =\frac{2 \times 10^{5}}{310} \\
& =645 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

Q6

$$
\begin{aligned}
-Q_{L(\text { hot water })} & =Q_{G(\text { tepid })} \\
-m c \Delta T & =m c \Delta T \\
-0.100 \times c_{\text {brass }} \times\left(T_{f}-80\right) & =0.100 \times c_{\text {brass }} \times\left(T_{f}-24\right) \\
-\left(T_{f}-80\right) & =T_{f}-20 \\
2 T_{f} & =100 \\
T_{f} & =50^{\circ} \mathrm{C}
\end{aligned}
$$

Q7. Answer in back of book is wrong. Correct answer is as follows:
$Q=m L_{f}$
$m=\frac{Q}{L_{f}}=\frac{7.24 \times 10^{5}}{2.76 \times 10^{5}}=2.62 \mathrm{~kg}$

Q10.

$$
\begin{aligned}
-Q_{L} & =Q_{G} \\
-\left(m_{W} c_{W}\left(T_{f}-T_{i(W)}\right)\right) & =m_{i} L_{f}+m_{i} c_{w}\left(T_{f}-T_{i(i)}\right) \\
-\left(0.200 \times 4180 \times\left(T_{f}-35\right)\right) & =0.200 \times 3.34 \times 10^{5}+0.200 \times 4180 \times\left(T_{f}-0\right) \\
-836 T_{f}+2.926 \times 10^{4} & =6.68 \times 10^{4}+836 T_{f} \\
-1672 T_{f} & =6.68 \times 10^{4}-2.926 \times 10^{4} \\
-1672 T_{f} & =3.754 \times 10^{4}[\text { impossible }]
\end{aligned}
$$

There is not enough thermal energy in the water to melt all of the ice, so temperature would not rise above $0^{\circ} \mathrm{C}$. We can calculate the mass of ice that would melt:

$$
\begin{aligned}
-Q_{L} & =Q_{G} \\
-\left(m_{W} c_{W}\left(T_{f}-T_{i(W)}\right)\right) & =m_{i} L_{f} \\
-(0.200 \times 4180 \times(0-35)) & =m_{i} \times 3.34 \times 10^{5} \\
2.926 \times 10^{4} & =m_{i} \times 3.34 \times 10^{5} \\
m_{i} & =\frac{2.926 \times 10^{4}}{3.34 \times 10^{5}} \\
m_{i} & =0.087 \mathrm{~kg}
\end{aligned}
$$

Hence, only 87 g of the 200 g of ice would melt but would stay at $0^{\circ} \mathrm{C}$

## Chapter 3

## Exam Excellence 3

Q2.
System is doing work, in other words, work is being done by this system, thus W is negative: $\mathrm{W}=-80 \mathrm{~J}$. Think of this as work coming 'out' of the system: $\mathrm{W}_{\text {out }}=-80 \mathrm{~J}$. If the question said work was done on the system then it would be $\mathrm{W}_{\text {in }}=+80 \mathrm{~J}$.

Internal energy is increased: thus $\Delta \mathrm{U}$ is positive: $\Delta \mathrm{U}=+270 \mathrm{~J}$
$\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}$
$+270=\mathrm{Q}+-80$
$Q=+350 \mathrm{~J}$ (Answer (C).

Q4.

$$
\eta=\frac{E_{\text {out }}}{E_{\text {in }}} \times 100=\frac{560}{(180+560)} \times 100
$$

$$
=75.6 \%
$$

Q6
$\eta=\frac{E_{\text {out }}}{E_{\text {in }}} \times 100$
$35=\frac{4200}{Q_{\text {in }}} \times 100$
$Q_{i n}=12000 \mathrm{~J}$

Q7.
We are interested in the energy of the gas (not of the cannister). The gas does work on the cannister, thus, work is done by the gas so W is negative. Heat energy comes in to the gas, so Q is positive.

$$
\begin{aligned}
W & =-100 \mathrm{~kJ} \\
Q & =+220 \mathrm{~kJ} \\
\Delta U & =Q+W \\
& =+220+(-100) \\
\Delta U & =+100 \mathrm{~kJ} \\
\Delta U & =U_{\text {final }}-U_{\text {initial }} \\
+100 & =U_{\text {final }}-580 \\
U_{\text {final }} & =680 \mathrm{~kJ}
\end{aligned}
$$

Q9 (b)
For a heat engine, there is, by definition, no change in internal energy. That is, $\Delta U$ is always zero: $\Delta U=0$

$$
\begin{aligned}
\Delta U & =Q+W \\
0 & =\left(Q_{\text {in }}-Q_{\text {out }}\right)+W_{\text {out }} \\
0 & =(320-280)+W_{\text {out }} \\
W_{\text {out }} & =40 \mathrm{~kJ} \\
\eta & =\frac{W_{\text {out }}}{Q_{\text {in }}} \times 100=\frac{40}{320} \times 100 \\
& =12.5 \%
\end{aligned}
$$

Chapter 4
Data Drill 4 page 26

$$
\begin{aligned}
B E_{M e V} & =\Delta m_{u} \times 931.5 \mathrm{MeV} / u \\
\Delta m_{u} & =\frac{B E_{M e V}}{931.5 \mathrm{MeV} / u}=\frac{472.359}{931.5} \\
& =0.5071 u
\end{aligned}
$$

$$
\begin{aligned}
\Delta E & =\Delta m c^{2} \\
& =5.044 \times 10^{-21} \times\left(3 \times 10^{8}\right)^{2} \\
& =4.5396 \times 10^{-12} \mathrm{~J} \\
& =\frac{4.5396 \times 10^{-12} \mathrm{~J}}{4 \text { nucleons }} \\
& =1.135 \times 10^{-12} \mathrm{~J} / \text { nucleon }
\end{aligned}
$$

Q8. Answer is back of book page 171 is wrong. The number of nucleons is 23 , not 12 and that affects the answer.
Mass of constituent particles is mass of 12 protons +11 neutrons +12 electrons:
$m_{c p}=(12 \times 1.007276)+(11 \times 1.008665)+(12 \times 0.000549)$

$$
=23.189215 u
$$

$\Delta m=m_{c p}-m_{\text {nuclide }}$
$=23.189215-22.994124=0.195091 u$
$B E=\Delta m \times 931.5 \mathrm{MeV}=181.72 \mathrm{MeV}$
$B E=\frac{181.72}{23}=7.90 \mathrm{MeV} /$ nucleon

## Exam Excellence 5 page 171

Q6. Should also mention that beta negative decay also produces and electron antineutrino, whereas beta positive decay also produces an electron neutrino.

## Data Drill 7 page 41

(a)

$$
\begin{aligned}
\delta x & = \pm \frac{x_{\max }-x_{\min }}{2}= \pm \frac{4.84-4.60}{2}= \pm 0.12 \mathrm{~V} \\
\delta \% & =\frac{\delta x}{x_{o}} \times 100 \%=\frac{0.12}{4.72} \times 100 \% \\
& =2.54 \%
\end{aligned}
$$

(b)

$$
\begin{aligned}
E_{A} & =\left|x_{O}-x_{A}\right|=|4.72-(3 \times 1.5)|=0.22 \mathrm{~V} \\
E \% & =\frac{E_{A}}{x_{A}} \times 100 \% \\
& =\frac{0.22}{4.5} \times 100 \% \\
& =4.89 \%
\end{aligned}
$$

## Exam Excellence 7 page 43

Q6.

$$
\begin{aligned}
Q & =I t \\
& =12 \times 3=36 \mathrm{C} \\
n & =\frac{Q}{q_{e}}=\frac{36 \mathrm{C}}{1.6 \times 10^{-19} \mathrm{C} / e} \\
& =2.25 \times 10^{20} e
\end{aligned}
$$

Q7.
$W=V q=7.5 \times 4.2=31.5 \mathrm{~J}$

Q8.
$V=\frac{W}{I t}=\frac{1800}{8 \times 75}=3 \mathrm{~V}$

## Chapter 8

## Data Drill 8 page 46

max gradient $=1.8740$
$\min$ gradient $=1.3235$

$$
\begin{aligned}
\delta x & =\frac{\max -\min }{2}=\frac{1.8740-1.3235}{2}=0.27345 \\
\delta \% & =\frac{\delta x}{x} \times 100=\frac{0.27345}{1.5483} \times 100 \\
& =17.66 \%
\end{aligned}
$$

## Exam Excellence 8 page 50

Q8.
$R=\frac{V}{I}=\frac{2.4}{0.3}=8.0 \Omega$
$A=\pi r^{2}=\pi\left(\frac{0.914 \times 10^{-3}}{2}\right)^{2}=6.561 \times 10^{-7} \mathrm{~m}^{2}$
$\rho=\frac{R L}{A}=\frac{8.0 \times 1}{6.561 \times 10^{-7}}$

$$
=5.248 \times 10^{-6} \Omega m^{-1}
$$

Q9.
$P=V I=I^{2} R$
$R=\frac{P}{I^{2}}=\frac{60}{(2.5)^{2}}=9.6 \Omega$

Q10.
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
$\frac{1}{R}=\frac{1}{5}+\frac{1}{12}+\frac{1}{18}=0.339$
$R=\frac{1}{0.339}=2.95 \Omega$

## Chapter 9

## Data Drill 9 page 52

Q1.

$$
\begin{aligned}
I_{A} & =I_{B(a v)}+I_{C(a v)} \\
& =\frac{3.02+2.99+2.99}{3}+\frac{0.49+0.50+0.47}{3} \\
& =3.00+0.487 \\
& =3.487 \Omega
\end{aligned}
$$

## Exam Excellence 9 page 54

Q3.

$$
\begin{aligned}
W & =P t=(5 \times 25) \times(4 \times 60 \times 60) \\
& =1800000 J \\
& =1800 \mathrm{~kJ}
\end{aligned}
$$

Q5.
Note error in question. Refers to data in Q3 on page 54 (not Q4).

$$
\begin{aligned}
W_{\text {incandescent }} & =P t=(5 \times 25) \times(30 \times 4 \times 60 \times 60) \\
& =5.4 \times 10^{7} \mathrm{~J} \\
W_{L E D} & =P t=(5 \times 5.5) \times(30 \times 4 \times 60 \times 60) \\
& =1.188 \times 10^{7} \mathrm{~J} \\
\Delta W & =W_{\text {incandescent }}-W_{L E D} \\
& =5.4 \times 10^{7}-1.188 \times 10^{7} \\
& =4.212 \times 10^{7} \mathrm{~J}(42120 \mathrm{~kJ})
\end{aligned}
$$

Q6.

$$
\begin{aligned}
R_{T} & =R_{R 1, R 2}+R_{R 3, R 4}+R_{5} \\
& =\left(\frac{1}{1 / 10}+\frac{1}{1 / 20}\right)+\left(\frac{1}{1 / 5}+\frac{1}{1 / 10}\right)+5 \\
& =6.67+3.33+5 \\
& =15 \Omega
\end{aligned}
$$

Q7.

$$
\begin{aligned}
I & =\frac{V}{R_{T}}=\frac{15}{15}=1.0 \mathrm{~A} \\
V_{R 1, R 2} & =I_{R 1, R 2} \times R_{R 1, R 2} \\
& =1.0 \times 6.67 \\
& =6.67 \mathrm{~V}
\end{aligned}
$$

Q9.

$$
\begin{aligned}
P & =\frac{W}{t} \\
t & =\frac{W}{P}=\frac{334.4 \times 10^{3}}{1.8 \times 10^{3}} \\
& =185.8 \mathrm{~s}(3 \min 6 \mathrm{~s})
\end{aligned}
$$

## Unit 1 Practice Assessment

## Dataset 2 Item 6

$$
\begin{aligned}
Q & =m c \Delta T \\
1000 \times 150 & =0.500 \times c_{w} \times(93-25) \\
c_{w} & \approx 4412 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

## Dataset 3 Item 10

## UNCERTAINTY IN GRADIENT

Percentage uncertainty in gradient:
max gradient $=35$
$\min$ gradient $=22.5$

$$
\begin{aligned}
\delta x & =\frac{\max -\min }{2}=\frac{35-22.5}{2}=6.25 \Omega \mathrm{~m}^{-1} \\
\delta \% & =\frac{\delta x}{x} \times 100=\frac{6.25}{29.7} \times 100 \\
& =21.20 \%
\end{aligned}
$$

## UNCERTAINTY IN AREA

There is an error in the percentage uncertainty calculation. The uncertainty in the area has not been calculated. Thus, the uncertainty due to the scale reading of the digital multimeter should be included. The uncertainty for a digital scale is $+/$ - the smallest increment ( 0.001 mm ).
$\delta= \pm 0.001 \mathrm{~mm}$
$d=0.227 \pm 0.001 \mathrm{~mm}$
$=0.227 \mathrm{~mm} \pm \frac{0.001}{0.227} \times 100 \%$
$=0.227 \mathrm{~mm} \pm 0.44 \%$
$r=0.1135 \mathrm{~mm} \pm 0.44 \%$
$A=\pi r^{2}$
$=\pi\left(0.1135 \times 10^{-3}\right)^{2} \pm 2 \times 0.44 \%$
$=4.047 \times 10^{-8} \mathrm{~m}^{2} \pm 0.88 \%$
UNCERTAINTY IN RESISTIVITY
The percentage uncertainty in the resistivity is the sum of percentage uncertainties in the gradient and the area. This is because the resistivity = gradient x area.

$$
\begin{aligned}
\delta \%_{(\rho)} & = \pm(21.2+0.88)= \pm 22.1 \% \\
\delta x & = \pm 1.20 \times 10^{-6} \Omega m \times \frac{22.1}{100} \\
& =2.65 \times 10^{-7} \Omega m \\
& =0.27 \times 10^{-6} \Omega m \\
\rho & =1.20 \times 10^{-6} \Omega m \pm 0.27 \times 10^{-6} \Omega m \\
\rho & =1.20 \times 10^{-6} \Omega m \pm 22.1 \% \\
\text { Range } & =0.93 \times 10^{-6} \Omega m \text { to } 1.47 \times 10^{-6} \Omega m
\end{aligned}
$$

## Chapter 10

## Data Drill 10 page 178

Q1(b). The answer in the book is wrong. The correct solution is:

$$
\begin{aligned}
v_{a v} & =\frac{14.1+13.41+13.6}{3}=13.7 \mathrm{~m} \mathrm{~s}^{-1} \\
\delta x & =\frac{\max -\min }{2}=\frac{14.1-13.41}{2}=0.36 \mathrm{~m} \mathrm{~s}^{-1} \\
\delta \% & =\frac{\delta x}{x} \times 100=\frac{0.36}{13.7} \times 100 \\
& =2.6 \%
\end{aligned}
$$

## Exam Excellence 10 page 178

Q4. There is no correct option. The answer in the book is wrong. The correct answer 3.6 s .
$v_{a v}=\frac{v+u}{2}=\frac{7+4}{2}=5.5 \mathrm{~ms}^{-1}$
$v_{a v}=\frac{s}{t}$
$t=\frac{s}{v_{a v}}=\frac{20}{5.5}=3.64 \mathrm{~s}$
OR
$v^{2}=u^{2}+2 a s$
$a=\frac{v^{2}-u^{2}}{2 s}=\frac{7^{2}-4^{2}}{2 \times 20}=0.825 \mathrm{~ms}^{-2}$
$v=u+a t$
$t=\frac{v-u}{a}=\frac{7-4}{0.825}=3.64 \mathrm{~s}$

Q8.
Treat $A$ as being at rest and hence the velocity of $B$ is $4.0 \mathrm{~m} \mathrm{~s}^{-1}$ West and 20 m apart.
$v=\frac{s}{t}$
$t=\frac{s}{v}=\frac{20}{4}=5.0 \mathrm{~s}$
Alternatively:
Let the distance $A$ travels be $s_{A}$, and the distance $B$ travels be $s_{B}$. We know that $s_{a}+s_{B}=20 \mathrm{~m}$, hence $s_{a}=20-s_{B}$.

$$
\begin{aligned}
t & =\frac{s_{A}}{v_{A}}=\frac{s_{B}}{v_{B}} \\
\frac{s_{B}-20}{1.5} & =\frac{s_{B}}{2.5} \\
1.5 s_{B} & =50-2.5 s_{B} \\
s_{B} & =12.5 \mathrm{~m} \\
t & =\frac{s_{B}}{v_{B}} \\
& =\frac{12.5}{2.5}=5.0 \mathrm{~s}
\end{aligned}
$$

Q10.
Determine the area under the curve $=280 \mathrm{~m}$

## Chapter 11

## Exam Excellence 11 page 76

Q4. The answer is incorrect. The correct answer is (D). The horizontal force of 36 N has to be greater than friction and motion is thus in the direction of the horizontal force. If friction acts to the right, motion must be to the left so net force the net force is $36 \mathrm{~N}-12 \mathrm{~N}(=24 \mathrm{~N})$ to the left.
$a=\frac{F_{n e t}}{m}=\frac{24}{8}=3 \mathrm{~ms}^{-2}$ to the left
Answer says "(C) $3 \mathrm{~m} \mathrm{~s}^{-2}$ to the right" which is incorrect.

Q5. The answer is incorrect. Option A is wrong as it has the two opposing forces on the right as not applying to anything, and are of unequal lengths as vectors. The most correct option is (B).

Q7.
$u=110 \mathrm{~km}^{-1}=30.56 \mathrm{~ms}^{-1}$
$v=45 \mathrm{~km} \mathrm{~h}^{-1}=12.5 \mathrm{~m} \mathrm{~s}^{-1}$
$v^{2}=u^{2}+2 a s$
$a=\frac{v^{2}-u^{2}}{2 s}=\frac{12.5^{2}-30.56^{2}}{2 \times 54}=-7.2 \mathrm{~ms}^{-2}$
$F_{n e t}=m a=1350 \times(-7.2)=-9720 N$

Q9. Delete the words " 50 cm " from the question as it is wrong.

$$
\begin{aligned}
a_{1} & =\frac{v-u}{t}=\frac{12-4}{5}=1.6 m s^{-2} \\
F_{\text {net }} & =m a_{1}=2 m a_{2}\left[F_{\text {net }} \text { is constant }\right] \\
m a_{1} & =2 m a_{2} \\
a_{1} & =2 a_{2} \\
1.6 & =2 a_{2} \\
a_{2} & =0.80 \mathrm{~ms}^{-2}
\end{aligned}
$$

Note: if the 50 cm is used, $\mathrm{a}_{1}=128 \mathrm{~m} \mathrm{~s}^{-2}$ or $1.56 \mathrm{~m} \mathrm{~s}^{-2}$ depending on the formula.

## Chapter 12

## Data Drill 12 page 79

Q1.

$$
\begin{aligned}
\Delta p & =p_{f}-p_{i} \\
& =\left(m_{A} v_{A}+m_{B} v_{B}\right)-\left(m_{A} u_{A}+m_{B} u_{B}\right) \\
& =(1.600 \times-0.167+0.600 \times 2.472)-(1.600 \times 0.863+0.600 \times 0) \\
& =(-0.2672+1.4832)-(1.3808) \\
& =+1.216-1.3808 \\
& =-0.1648 \mathrm{~kg} \mathrm{~ms}^{-1}
\end{aligned}
$$

## Exam Excellence 12 page 81

Q5.

$$
\begin{aligned}
\Delta p & =m(v-u) \\
F t & =m(v-u) \\
8000 \times 0.0005 & =0.046(v-0) \\
v & =86.96 m s^{-1}(B)
\end{aligned}
$$

Q6.

$$
\begin{aligned}
p_{i} & =p_{f} \\
0 & =m_{C} v_{C}+m_{B} v_{B} \\
& =900 \times v_{C}+5.5 \times 450 \\
v_{C} & =\frac{2475}{-900}=-2.75 \mathrm{~ms}^{-1}
\end{aligned}
$$

Q7. The question needs correcting. The mass of the ball is 1.0 kg .
$\Delta p=p_{f}-p_{i}$
$=m v-m u$
$=m(v-u)$
$=m\left(15-{ }^{-15}\right)$
$=30 \mathrm{~m}$
$=30 \mathrm{~kg} \mathrm{~ms}^{-1}$ [assuming a 1 kg ball]
Q8(b)

$$
\begin{aligned}
p_{i} & =p_{f} \\
m_{A} u_{A}+m_{B} u_{B} & =\left(m_{A}+m_{B}\right) v_{A+B} \\
8.00 \times 15.0+5.00 \times 0 & =(8.00+5.00) v_{A+B} \\
120 & =13.00 v_{A+B} \\
v_{A+B} & =\frac{120}{13.00}=9.23 \mathrm{~ms}^{-1} \text { East }
\end{aligned}
$$

Q9.

$$
\begin{aligned}
p_{i} & =m_{1} u_{1}+m_{2} u_{2} \\
& =1150 \times\left(105 \times \frac{1000}{60 \times 60}\right)+1300 \times\left(-80.0 \times \frac{1000}{60 \times 60}\right) \\
& =3.354 \times 10^{4}+{ }^{-} 2.889 \times 10^{4} \\
& ={ }^{+} 4.65 \times 10^{3} \mathrm{~ms}^{-1} \text { East }
\end{aligned}
$$

Q10.

$$
\begin{aligned}
p_{i} & =p_{f} \\
m_{1} u_{1}+m_{2} u_{2} & =m_{1} v_{1}+m_{2} v_{2} \\
58 \times 3+-15 \times 5 & =58 \times-2+15 \times v_{2}(\text { work in grams as conversion cancels }) \\
99 & =-116+15 v_{2} \\
215 & =15 v_{2} \\
v_{2} & =14.3 \mathrm{~ms}^{-1} \text { East }
\end{aligned}
$$

Note: because there is only 1 significant figure in the velocity data, the maximum number of s.f. in the answer should also be 1 s.f. Hence, the answer should be $10 \mathrm{~m} \mathrm{~s}^{-1}$ East. However, it is best to give the answer to $1 \mathrm{~d} . \mathrm{p}$. in this case.

## Chapter 13

## Data Drill 13 page 84

The question has an error in it. It asks for "the instantaneous velocity at the end of the collision", however, there is no collision, and, at the end of the journey it's velocity would be zero at the final height reached. The question should say "Predict the instantaneous velocity of the marble at the lowest point of its motion when it was released from a height of 40 cm if the mechanical efficiency was $100 \%$ ". Then the answer in the back is correct.

$$
\begin{aligned}
E_{p} & =E_{k}(100 \% \text { mechanical efficiency }) \\
m g h & =\frac{1}{2} m v^{2} \\
g h & =\frac{1}{2} v^{2} \\
v & =\sqrt{2 g h}=\sqrt{2 \times 9.8 \times 0.400} \\
& =2.8 m s^{-1}
\end{aligned}
$$

## Exam Excellence 13 page 86

Q5 (D). Answer is correct.
The box is at a constant velocity so the net force is zero. This means the net work done on the box is also zero. To explain this we can say: The pushing force is in the direction of displacement so F and s are both positive. Work is a scalar quantity but is the product of two vectors so when $F$ and $s$ are both positive, the work done on the box is also positive (+W). As it is a rough bench there must be friction acting to oppose the motion. Friction is in the
opposite direction to the displacement vector so $F$ is negative while $s$ is positive. Work done on the block by friction is $-F \times s$, so work is negative $(-W)$. The algebraic sum of the work gives the net work done: $W_{n e t}=+W+(-$ $W)=0$.

Q6.

$$
\begin{aligned}
F_{n e t} & =m_{B} g=2 \times 9.8=19.6 \mathrm{~N} \\
a & =\frac{F_{n e t}}{m}=\frac{F_{n e t}}{m_{A}+m_{B}}=\frac{19.6}{2+2}=4.9 \mathrm{~ms}^{-2} \\
v^{2} & =u^{2}+2 a \mathrm{~s} \\
& =0+2 \times 4.9 \times 0.80=7.84 \\
v & =2.8 \mathrm{~ms}^{-1} \\
E_{k(B)} & =\frac{1}{2} m_{B} v_{B}^{2}=\frac{1}{2} \times 2 \times 7.84=7.84 \mathrm{~J} \\
& O R \\
W_{B} & =F_{n e t(B)} \times s_{B} \\
& =m_{B} a_{B} \times s_{B}=(2 \times 4.9) \times 0.8 \\
& =7.84 \mathrm{~J}
\end{aligned}
$$

Q7.

$$
\begin{aligned}
W & =\frac{1}{2} m v^{2} \\
250 & =\frac{1}{2} \times \frac{50}{1000} v^{2} \\
v & =100 m s^{-1}
\end{aligned}
$$

Q8.
(a)

$$
\begin{aligned}
p_{i} & =p_{f} \\
m_{A} u_{A}+m_{B} u_{B} & =\left(m_{A}+m_{B}\right) v_{A+B} \\
200 \times 85+190 \times^{-} 130 & =(200+190) v_{A+B}\left[\text { can leave in } \mathrm{km} \mathrm{~h}^{-1}\right] \\
-41700 & =390 v_{A+B} \\
v_{A+B} & =-106.9 \mathrm{~km}^{-1} \text { West } \\
& =-29.7 \mathrm{~ms}^{-1} \text { West }
\end{aligned}
$$

(b) Answer in back is wrong. It is not 0.608 m .

$$
\begin{aligned}
F_{\text {net }} & =m a \\
a & =\frac{F_{n e t}}{m}=\frac{1450}{390}=3.717 \mathrm{~ms}^{-2} \\
v^{2} & =u^{2}+2 a s \\
0 & =29.7^{2}+2 \times-3.717 \times s \\
s & =118.6 \mathrm{~m}
\end{aligned}
$$

Q9.
(a)

$$
\begin{aligned}
p_{i} & =p_{f} \\
m_{A} u_{A}+m_{B} u_{B} & =m_{A} v_{A}+m_{B} v_{B} \\
1.2 \times 4.5+1.8 \times 2.5 & =1.2 v_{A}+1.8 \times 3.7 \\
9.9 & =1.2 v_{A}+6.66 \\
1.2 v_{A} & =3.24 \\
v_{A} & =2.7 \mathrm{~ms}^{-1} \rightarrow(\text { to the right })
\end{aligned}
$$

(b)
$E_{k(i)}=\frac{1}{2} m_{A} u_{A}{ }^{2}+\frac{1}{2} m_{B} u_{B}{ }^{2}=12.15+5.625=17.775 \mathrm{~J}$
$E_{k(f)}=\frac{1}{2} m_{A} v_{A}{ }^{2}+\frac{1}{2} m_{B} v_{B}{ }^{2}=4.374+12.321=16.695 \mathrm{~J}$
$E_{\mathrm{k}(\mathrm{f})} \neq E_{\mathrm{k}(\mathrm{i})} \therefore$ inelastic

Q10
(a)
$\eta_{\text {electric }}=\frac{175}{250} \times 100=70 \%$
$\eta_{\text {freplace }}=\frac{280}{450} \times 100=62 \%$
Electric heater is more efficient.

## Chapter 14

No additional worked solutions

## Chapter 15

Q1. The question is wrong. None of the options are correct. For an open pipe only odd harmonics are produced, so if the fundamental is 116.5 Hz , the $3^{\text {rd }}$ harmonic will be $3 \times 116.5=349.5 \mathrm{~Hz}$, and the $5^{\text {th }}$ harmonic will be 582.5 Hz. Suggest the following options are used: (A) 58.2 Hz , (B) $233 \mathrm{~Hz},{ }^{*}(\mathrm{C}) 350 \mathrm{~Hz}$, (D) 466 Hz .

## Chapter 16

Exam excellence 16 page 103
Q1.

$$
\begin{aligned}
I_{1} r_{1}^{2} & =I_{2} r_{2}^{2} \\
100 \times 0.5^{2} & =50 \times r_{2}^{2} \\
r_{2}^{2} & =\frac{25}{50} \\
r_{2} & =0.71 \mathrm{~m}
\end{aligned}
$$

Q3.
Wording should be corrected to read: Determine which statement describes what happens when light travels from an optically less dense medium into an optically denser medium.

Q6.
(a)

$$
\begin{aligned}
\frac{P}{A} & =I \\
P & =I A=I \times \pi r^{2} \\
& =350 \times \pi\left(\frac{10}{2} \times 10^{-2}\right)^{2} \\
& =350 \times\left(7.85 \times 10^{-3}\right) \\
& =2.75 \mathrm{~W}
\end{aligned}
$$

(b)

Power of light striking lens is 2.75 W as shown in part (a) above. This amount of power is now concentrated to an area of diameter of 1 cm .

$$
\begin{aligned}
I & =\frac{P}{A} \\
& =\frac{2.75}{\pi\left(\frac{1}{2} \times 10^{-2}\right)^{2}}=\frac{2.75}{7.85 \times 10^{-5}} \\
& =35032 \mathrm{Wm}^{-2}
\end{aligned}
$$

(c)

The answer in the back of the book is incorrect. It will not catch fire.
The intensity of light in the 1 cm spot is $35032 \mathrm{~W} \mathrm{~m}^{-2}$ as shown in part (b) above. This can be calculated in units of W cm ${ }^{-2}$ :

$$
\begin{aligned}
I & =\frac{P}{A} \\
& =\frac{2.75}{\pi\left(\frac{1}{2}\right)^{2}}=\frac{2.75}{0.785} \\
& =3.50 W \mathrm{~cm}^{-2}
\end{aligned}
$$

This is below the required intensity to light paper of $100 \mathrm{~W} \mathrm{~cm}^{-2}$, so the paper is unlikely to catch fire.

## Unit 2 Data Test page 106

Item 2 (Dataset 1)
$\delta= \pm \frac{1.846-1.834}{2}=0.0060 \mathrm{~s}$
Item 3 (Dataset 1)

There is a mistake in the question. It should read: "Identify the relationship between the length, L , and the period squared, $\mathrm{T}^{2}$, of the pendulum." The answer is correct.

Item 4 (Dataset 1)
$L=1.2 \rightarrow T^{2}=5.2$
$T=\sqrt{5.2}=2.3 \mathrm{~s}$

Item 5 (Dataset 2)
gradient $=\frac{\sin r}{\sin i}$
$n_{\text {air } \rightarrow \text { plastic }}=\frac{\sin i}{\sin r}$
gradient $=\frac{1}{n_{a p}}=n_{p a}$
Item 6 (Dataset 2)
The gradient depends on how the line of best fit is drawn. For the figure below the $y$-value when $x$ is 0.80 , is 0.54 approximately. Answers between 1.48 to 1.50 would be acceptable.

gradient $=\frac{0.54-0}{0.80-0}=0.675$
$n_{a p}=\frac{1}{\text { gradient }}=\frac{1}{0.675}=1.48$

## Item 7 (Dataset 2)

The answer in the back is correct for a refractive index of 1.49. For an observed value of 1.48 , the error can be calculated:

$$
E_{A}=\left|x_{O}-x_{A}\right|=|1.49-1.51|=0.02
$$

$$
E \%=\frac{E_{A}}{x_{A}} \times 100=\frac{0.02}{1.51} \times 100=1.3 \%
$$

This is less than $5 \%$ which means the experiment is an accurate means of determining refractive index.
Item 9 (Dataset 3)

$$
\begin{aligned}
\delta_{\text {gradient }} & =\frac{\max -\min }{2}=\frac{11.53-7.22}{2}=2.16 \mathrm{~ms}^{-2} \\
\delta_{y \text {-intercept }} & =\frac{-0.09-1.0}{2}=0.545 \mathrm{~ms}^{-1} \\
v & =(9.17 t \pm 2.16)+(0.036 \pm 0.545) \mathrm{ms}^{-1}
\end{aligned}
$$

## Item 10 (Dataset 3)

$$
\begin{aligned}
a & =\text { gradient }=9.17 \pm 2.16 \mathrm{~ms}^{-2} \\
a & =9.17 \mathrm{~ms}^{-2} \pm \frac{2.16}{9.17} \times 100 \%=9.17 \mathrm{~ms}^{-2} \pm 23.5 \% \\
a & =7.01 \mathrm{~ms}^{-2} \text { to } 11.33 \mathrm{~ms}^{-2}(\text { range }) \\
E \% & =\frac{\left|x_{O}-x_{A}\right|}{x_{A}} \times 100=\frac{9.17-9.8}{9.8} \times 100 \\
& =6.4 \%
\end{aligned}
$$

Note: E\% is 6.4\%. The value in the book of $6.52 \%$ on page 185 is incorrect.

## Mandatory practical 8.1 page 136.

The diagram in the Student Workbook is incorrect. It is for the non-ohmic resistor (diode). The circuit diagram should be as per the textbook page 480 (below):


## Mandatory practical 10.1 page 148.

In Table 2, the heading "Time squared" should have the symbol t².

## Mandatory practical 16.1 page 165.

Discussion question 1. Line 3. The text should read "(or 1.5/57.1 rad)".

