ERRATA

OXFORD PHYSICS FOR QUEENSLAND U1&2 (2025)

Module	Error	Correct		
p15. Worked example 1.7A	Answer is wrong	Mean distance = 53.7 mm $\delta \bar{x} = \pm 4.5$ mm 54 (1 mark) ± 5 mm (1 mark)		
p 48, module 2.1. Definition of <i>work</i> in sidebar	symbol: W	symbol: <i>E</i>		
p 66, module 2.8, 2 nd paragraph, line 4	The cooler water is less dense	The cooler water is more dense		
p 72, WE 2.9A. The 100 should be 1000. Calculation is correct though.	(b) $m = \frac{6.6}{100} = 0.0066 \text{ kg}$	b) $m = \frac{6.6}{1000} = 0.0066 \text{ kg}$		
P 75, Module 2.11 Review Q 7	Option A: 263 K	Option A: 258 K (correct in the answers)		
p76 Module 2.11 Review Q12	Option A: 25.1°C	Option A: 26.0°C		
p76 Module 2.11 Review Q23	400 g Answer 36.2 °C	400.0 g Answer 36 °C		
p76 Module 2.11 Review Q24 (answers)	Fix answer. Note: this answer may require some research	The salt, when dissolved in water, dissociates into ions (Na+ and Cl–). This adds another force of attraction between the water molecules. (1 mark) This restricts the ability of the molecules to move and use up heat energy as it is added (1 mark) This means that salty water rises in temperature more than pure water for the same addition of thermal energy. (1 mark)		

p77, module 2.11B. Data Drill – line 5.	100.0 g	1000.0 g			
p 88, module 3.1. Skill drill.	Questions specify 1 d. p.	Remove reference to 1 d. p. (see below)			
p 88, module 3.1. Skill drill answers.	Answers have more precision than allowed for by the graph. The minor gridlines did not appear in diagram (sigh!)	Answers (see below): Q1. 15°C (allow 13°C –18°C) Q2. 110 kJ (allow 100kJ – 120 kJ) Q3. 138 kJ (allow 125 kJ – 150 kJ)			
p93 module 3.3. Sample calculation.	Should be negative signs on left-hand-side of the first three lines: $-Q_{lost} = -(mc\Delta T)_{lost} = -m_{hot \ copper} \times c_{copper} \times \Delta T_{hot \ copper} = -(m_{hot \ copper} \times c_{copper} \times (T_{f} - T_{i})_{hot \ copper}) =$				
p156. CYL 5.5 Q7c version in the interactive worksheet. All other instances are correct.	The on-line interactive worksheet has ${}^{222}_{88}Rn$	²²² ₈₆ Rn			
p 173 Module 5.8 Review Questions, Q13	Option D: 2×10^{-3} s	Option D: 4×10^{-3} s			
p 175 Module 5.8 Data Drill	Answers for Q3, 4 done correct but done with distance in mm	New answers are coming with distance in m (see below)			
p198. CYL6.4 Q3 stem	The following reaction has an energy output of 5.23×10^{-13} J per fusion event.	For the following reaction:			
p198. CYL6.4 Q3 (a) (this is correct in the answers)	a joules per fission event	a joules per fusion event			

p 204 module 6.5 Data	Table 1 has incorrect values. The correct values are:					
	Atomic number (Z)	Mass number (A)		Binding energy (MeV)		
	20	45		388.350		
	21	47		398.842		
	22	49		398.958		
	23	53		461.630		
	24	56		461.776		
	25	58		504.368		
	25	59		512.179		
	26	61		530.883		
	28	64		561.728		
	30	66		578.160		
p 204 module 6.5 Data Drill Q1 Solutions	$=\frac{482.076}{55}(1 \text{ mark})$ $= 8.76 \text{ MeV per nucleon (1 mark)}$		$=\frac{524.214}{59}(1 \text{ mark})$ $= 8.88 \text{ MeV per nucleon (1 mark)}$			
p 204 module 6.5 Data Drill Q2 Solutions	⁵⁶ ₂₆ Fe			$^{66}_{30}$ Zn (1 mark for A = 66 and Z = 30) (1 mark for X = Zn)		
p235. CYL 7.4 Q10.	draws 1500 A from a battery for 3.0 s.		draws 1500 A from a 400 V battery for 3.0 s.			
p 239, module 7.5. Worked example 7.5B, Step 3:	$R_1 = \frac{RA_1L}{L_1A}$		$R_1 = \frac{RAL_1}{LA_1}$			
p 246, WE 7.6C Step 4	Gradient = $\frac{(27.5 \times 10^{-3}) - 0}{(5 \times 10^{-3})}$		Gradient = $\frac{(27.5 \times 10^{-3}) - 0}{5}$			

Skill drill 3.1 page 88

Practise your skills

1 Identify the melting point temperature of benzene (in °C). (1 mark)

15°C. Accept 13-18°C (1 mark)

2 Calculate the minimum amount of energy (in kJ) required for benzene to melt completely. Show your working. (2 marks)

The melting is represented by the first flat section of the graph and occurs from approximately 60 s to 170 s. The description above tells us every second 1,000 J is absorbed by the benzene from the heater.

This means the number of joules absorbed by the benzene = $(170-60) \times 1,000 (1 \text{ mark})$

= 110, 000 J

= 110 kJ (allow 100 kJ to 120 kJ (1

mark)

3 Calculate the latent heat of fusion of benzene (in kJ kg⁻¹). Show your working. (2 marks)

 $Q = mL_f$ $L_f = \frac{Q}{m} (1 \text{ mark})$ $= \left(\frac{110,000}{\frac{800}{1,000}}\right)$ = 137500 J $= 138 \text{ kJ (allow 125 kJ to 150 kJ) (1 \text{ mark})}$

4 **Predict** the temperature of benzene (in °C) at t = 400 s, given that the latent heat of vaporisation is 350,000 J kg⁻¹. Justify your answer. (2 marks)

The temperature of benzene at t = 400 s is 90°C. (1 mark) The second horizontal section of the graph shows the state change from liquid to gas. We know this because it is the second occasion (at a higher temperature) where energy is absorbed by benzene but its temperature remains constant (1 mark). This horizontal section aligns with T = 90 °C.

Module 5.8 Data Drill page 175

Apply understanding

1 Calculate the average intensity at a distance of 25.0 mm (1 d.p.). (1 mark)

Average = $\frac{14.9 + 20.8 + 17.8}{3}$

=17.8 cps (1 mark)

2 Calculate the absolute uncertainty in the average intensity at a distance of 25.0 mm (1 d.p.). (1 mark)

Absolute uncertainty =
$$\pm \frac{20.8 - 14.9}{2}$$

$$= 3.0 \text{ cps} (1 \text{ mark})$$

Analyse data

3 Identify the absolute uncertainty in the gradient and *y*-intercept of the linear trendline. (2 marks)

gradient of maximum trendline (to be drawn) = $\frac{32-1}{2500-0}$ = 0.0124(1mark) accept 0.012-0.013

absolute uncertainty in the gradient =
$$\pm \frac{\max - \min}{2}$$

= $\pm \frac{0.0124 - 0.0084}{2}$
= ± 0.0020 (1 mark) accept ± 0.002
absolute uncertainty in the y-intercept = $\pm \frac{\max - \min}{2}$
= $\pm \frac{5.0 - 1.0}{2}$
= ± 2.0 (1 mark) accept ± 2 to ± 3

Interpret evidence

4 **Draw** a quantitative conclusion about the relationship between the radiation intensity and distance. Include the absolute or percentage uncertainty and show your reasoning. (4 marks)

percentage uncertainty in the gradient = $\pm \frac{0.0020}{0.0103} \times 100$ = $\pm 19.4\%$ (1 mark) accept 17-22% percentage uncertainty in the *y*-intercept = $\pm \frac{2.0}{2.8} \times 100$ = $\pm 71.4\%$ (1 mark) accept 70%-90%

$$I = \left(\left(0.0103 \pm 19\% \right) \frac{1}{r^2} + \left(2.0 \pm 70\% \right) \right) A (2 \text{ marks}) \text{ accept values from above}$$

If you find any more, contact Richard Walding at: waldingr49@gmail.com