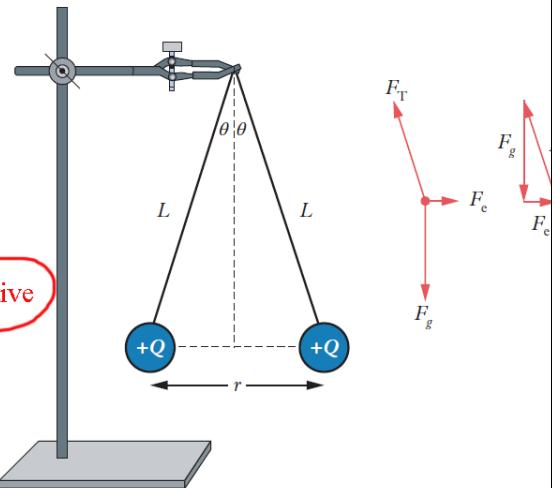
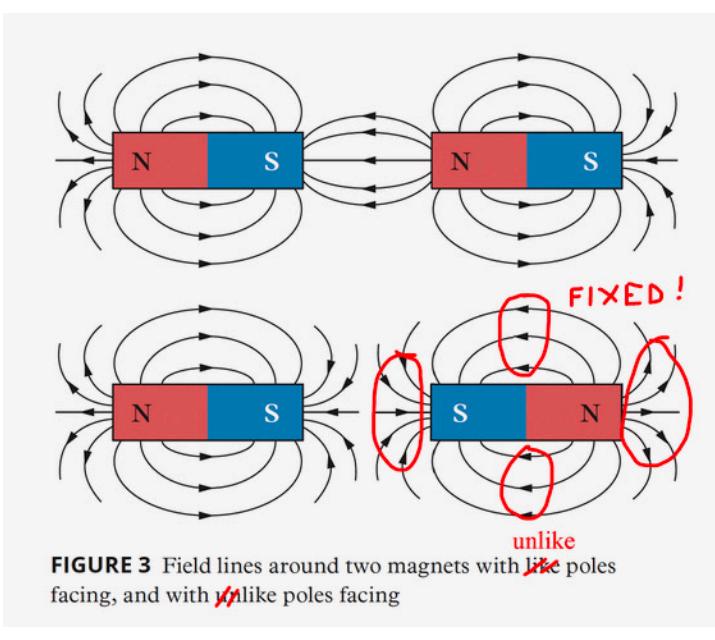
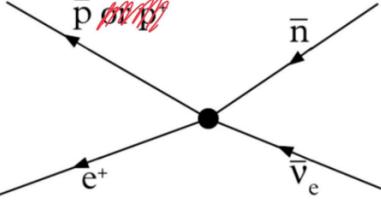


ERRATA U 3& 4

OXFORD PHYSICS FOR QUEENSLAND U3&4 (2025)



Module	Correction being made	Digital updated
2.1 WE2.1D page 58	<p>v_y should be 4.0 not 5.0, and other values as shown:</p> <p>a</p> <p>(1 mark)</p> <p>b Resultant impact velocity = $\sqrt{3^2 + 4^2}$ $= \sqrt{9 + 16}$ $= 5.0 \text{ m s}^{-1}$ (1 mark) 5.0</p> <p>$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$ $= \frac{4}{3}$ $\theta = \tan^{-1}\left(\frac{4}{3}\right)$ $53 = 59^\circ$ to the horizontal (1 mark)</p> <p>$v = 5.0 \text{ m s}^{-1}$ at 59° to the horizontal (1 mark) $5.0 \quad 53$</p>	No 10.1.26
2.5A Review Q	<p>Swap diagrams for (b) and (c)</p> <p>b at its highest point</p> <p>c shortly before it hits the ground.</p>	No 10.1.26


3.2 WE3.2D (b) and (e)	<p>b $F_H = F_A \cos \theta$</p> $= 400 \cos 30^\circ \quad (1 \text{ mark})$ $= 400 \times 0.866 \quad (1 \text{ mark})$ $= 346 \text{ N} \quad (1 \text{ mark}) \text{ to the right (3 s.f.)}$ $346 \quad (1 \text{ mark})$ <p>e Frictional force $F_f = 360 \text{ N}$ (because $F_f = -F_H$ when speed is constant) (1 mark)</p>	No 10.1.26
3.3 WE3.3 step 4	<p>3753 + 3550 should be 3753 – 3550</p> $F_{\text{net}} = F_{\text{up}} - F_{\text{g2}}$ $= 3,753 + 3,550$ $= 203 \text{ N up the incline (1 mark)}$	Yes 10.1.26
3.3 WE3.3B	<p>Step 9: Calculate percentage error. Use the unrounded answer in your calculations.</p> <p><i>Note that for percentage error calculations the true value has to be in Kelvin.</i></p> <p>Step 10: Finalise your answer and make sure you have included the correct units and significant figures.</p> <p>$\% \text{ error} = \frac{\text{measured value} - \text{true value}}{\text{true value}} \times 100\%$</p> $\% E = \frac{E_A}{x_A} \times 100$ $= \frac{1.25}{22.5} \times 100$ $= 5.56\% \quad (1 \text{ mark})$ $\frac{1.25}{(22.5 + 273)} \times 100$ $= 0.42\% \quad (1 \text{ mark})$ <p>5.6% (2 s.f.) (1 mark)</p> <p><i>that's a lower-case k NOT CAPITAL K</i></p>	
4.3 CYL4.3 Q 11b answer	<p>The correct answer is in blue.</p> <p>b. Determine how much time it takes the car to complete one lap of the circular track. (2 marks)</p> <p>The car was found in part (a) to not be able to navigate the corner as there was not enough friction to keep it on the road. (1 mark)</p> <p>The car would not be able to complete one lap. (1 mark)</p>	
4.3 page 159	<p>gravity and the centripetal force. That's why it has a greater length. cos</p> <p>The normal sin force can be resolved into two components: one vertical, $F_N \sin \theta$, and one horizontal, $F_N \cos \theta$. There is no acceleration in the vertical direction so $F_N \cos \theta$ must</p>	No 10.1.26
4.3 WE4.3E Step 2	<p>a $v = \frac{2\pi r}{T}$</p> $= \frac{2\pi \times 0.25}{1.00} \quad (1 \text{ mark})$ $= 1.571 \text{ ms}^{-1} \quad 1.571$ $= 1.6 \text{ ms}^{-1} \quad (2 \text{ s.f.}) \quad (1 \text{ mark})$	No 10.1.26

<p>4.5 ReviewQ 4.5A Q4</p>	<p>OUR WORKBOOK.</p> <p>of mass M</p> <p>4 A student is investigating centripetal motion by whirling a rubber stopper above his head in a horizontal circle at constant speed.</p> <p>They increase the mass, m, of the hanging slotted masses but want to keep the radius, r, constant. To do this, they must</p> <p>A increase m or v. B increase m or decrease v. C decrease m or increase v. D decrease m or v.</p>	<p>No 10.1.26</p>
<p>5.2</p>	<p>Physics U3&4 Module 5.2 page 179</p> <p>Skill drill</p> <p>Identifying relationships</p> <p>Science inquiry skills: Processing and analysing data (Lesson 1.7)</p> <p>This shows the relationship is linear with a constant $m = 2$. The equation is $y = 2x$. For DV2, doubling the IV quadruples the DV, so</p>	<p>no 10.1.26</p>
<p>5.2 Page 179</p>	<p>2.92 kg. These can be substituted into the equation:</p> $G = \frac{Fr^2}{Mm}$ <p>Change 2.92 to 1.46</p>	<p>no</p>
<p>5.3 CYL5.3 Q5</p>	<p>Change 10^{27} to 10^{24}</p> <p>5 Calculate the gravitational field strength at a point 100,000 km above Earth's centre. The mass of the Earth $m_{\text{Earth}} = 5.97 \times 10^{27.14}$ kg, mean radius of Earth $r_{\text{Earth}} = 6.37 \times 10^6$ m (3 s.f.). (3 marks)</p>	<p>No 10.1.26</p>
<p>5.3 WE5.3A</p>	<p>Worked example 5.3A</p> <p>PHYSICS U3+4</p> <p>Gravitational field strength using weight</p> <p>A 650 g mass is allowed to hang freely off a spring balance on the Moon. The scale is in newtons (N) and the weight reading on the scale is 1.06 N.</p> <p>a Calculate the gravitational field strength on the Moon in $N\text{kg}^{-1}$. Give your answer to an appropriate number of significant figures. (2 marks)</p> <p>b Express the gravitational field strength on the Moon as acceleration due to gravity on the Moon in ms^{-2}. Give your answer to an appropriate number of significant figures. (1 mark)</p>	<p>no 10.1.26</p>
<p>5.3 Fig 5 page 188</p>		<p>no 10.1.26</p>

	<p>Red line should extend to centre of Earth and have an arrow head</p>	
5.3 CYL5.3 Q 5.	<p>5 Calculate the gravitational field strength at a point 100,000 km above Earth's centre. The mass of the Earth $m_{\text{Earth}} = 5.97 \times 10^{27} \text{ kg}$, mean radius of Earth $r_{\text{Earth}} = 6.37 \times 10^6 \text{ m}$ (3 s.f.). (3 marks)</p> <p>10^{24}</p>	no 10.1.26
5.3 WE5.3A. Your turn.	<p>Your turn</p> <p>The gravitational field strength on Mars is 3.7 N kg^{-1}. Calculate the gravitational force acting on a 2.5 kg object on Mars. Give your answer to an appropriate number of significant figures. (2 marks)</p> <p>$N \text{ kg}^{-1}$ PHYSICS</p>	no 10.1.26
5.3 WE5.3E Step 6	<p>Step 6: Calculate the gravitational field strength at P due to black hole B (g_{PB}). (1 mark for "Calculates the field at P due to B")</p> $g_{\text{PB}} = \frac{GM_B}{r_{\text{PB}}^2}$ $= 6.67 \times 10^{-11} \times \frac{100 \times 2 \times 10^{30}}{(1.803 \times 10^{11})^2}$ $= 0.447 \times 10^{-6} \text{ m s}^{-2}$ (1 mark) 0.44703 <p>Step 7: Add the two vectors g_{PA} and g_{PB} by joining the arrows head to tail. Draw in the resultant vector, g_p. (1 mark for "Draws correct vector diagram")</p> <p>$g_{\text{PB}(X)} = g_{\text{PB}} \sin \theta$</p> <p>$g_{\text{PB}(Y)} = g_{\text{PB}} \cos \theta$</p> <p>$g_{\text{PA}} = 13.34 \times 10^{-7} \text{ m s}^{-2}$</p> <p>$g_p = \sqrt{g_{\text{PA}}^2 + g_{\text{PB}}^2}$</p> <p>$\phi = \tan^{-1} \left(\frac{g_{\text{PB}}}{g_{\text{PA}}} \right)$</p> <p>(1 mark)</p>	No 10.1.26
5.3 WE5.3E	<p>OXFORD UNIVERSITY PRESS</p> <p>MODULE 5 ORBITAL MECHANICS 19</p> <p>Think</p> <p>Step 8: Resolve the two vectors g_{PA} and g_{PB} into components along the x- and y-axes. (1 mark for "Calculates the components of the field on P due to B")</p> $g_{\text{PB}(X)} = g_{\text{PB}} \sin \theta$ $= 0.447 \times 10^{-6} \sin 56.31^\circ$ $= 3.426 \times 10^{-7} \text{ m s}^{-2}$ 3.414 $g_{\text{PB}(Y)} = g_{\text{PB}} \cos \theta$ $= 0.447 \times 10^{-6} \cos 56.31^\circ$ $= 2.276 \times 10^{-7} \text{ m s}^{-2}$ (1 mark) <p>x-component:</p> $g_{\text{PA}(X)} = 0$ $g_{\text{PA}(Y)} = 13.34 \times 10^{-7}$ <p>$g_p = g_{\text{PA}(X)} + g_{\text{PB}(X)}$</p> $g_p = 3.426 \times 10^{-7} \text{ m s}^{-2}$ <p>y-component:</p> $g_{\text{PA}(Y)} = 13.34 \times 10^{-7}$ $g_{\text{PB}(Y)} = 2.276 \times 10^{-7}$ 2.276 <p>$g_p = g_{\text{PA}(Y)} + g_{\text{PB}(Y)}$</p> $g_p = 13.34 \times 10^{-7} + 2.276 \times 10^{-7}$ $= 15.62 \times 10^{-7} \text{ m s}^{-2}$ (1 mark) <p>Step 9: Add the x-components of the two vectors and add the y-components of the two vectors. (1 mark for "Calculates the sum of fields in both directions")</p> <p>Step 10: Add the two vectors g_p and g_s by joining the arrows head to tail. Draw in the resultant vector, g_r. Solve for the resultant, g_r. Calculate the angle, ϕ. (1 mark for "Provides correct mathematical reasoning")</p> <p>$g_{\text{PA}(X)} = 0$</p> <p>$g_{\text{PA}(Y)} = 13.34 \times 10^{-7}$</p> <p>$g_{\text{PB}(X)} = 3.426 \times 10^{-7}$ 3.414</p> <p>$g_{\text{PB}(Y)} = 2.276 \times 10^{-7}$ 2.276</p> <p>$g_p = g_{\text{PA}(X)} + g_{\text{PB}(X)}$</p> $g_p = 3.426 \times 10^{-7}$ 3.414 <p>$g_p = g_{\text{PA}(Y)} + g_{\text{PB}(Y)}$</p> $g_p = 13.34 \times 10^{-7} + 2.276 \times 10^{-7}$ $= 15.62 \times 10^{-7} \text{ m s}^{-2}$ (1 mark) <p>$g_{\text{PA}} = 15.62 \times 10^{-7} \text{ m s}^{-2}$ 15.62</p> <p>$g_{\text{PB}} = 16.00 \times 10^{-7} \text{ m s}^{-2}$ 15.98</p> <p>$\phi = \tan^{-1} \left(\frac{g_{\text{PB}}}{g_{\text{PA}}} \right)$</p> $= 12.3^\circ$ (1 mark) ✓ <p>Step 11: Give your answer to an appropriate number of significant figures, in this case 3 s.f. Use the correct units. Make sure you include the direction. (1 mark for "Provides correct answer")</p> <p>The gravitational field at P is 16.0 m s^{-2} (3 s.f.) at an angle of 12.3° towards B from the line joining A and P. (1 mark)</p> <p>12.3</p>	No 10.1.26

	Note also: The first line in Step 11 should read “The gravitational field at P is $16.0 \times 10^{-7} \text{ ms}^{-1}$ (3 s. f.)	
5.4	<p>Real-world physics U3&4 Physics Lesson 5.4</p> <p>Apply your understanding</p> <p>1. Starlink satellites are at 550 km altitude. Calculate the time in milliseconds for a signal to go from the ground to the satellite. (1 mark)</p> $t = \frac{\text{distance}}{\text{speed}}$ $= \frac{550 \times 1,000}{3 \times 10^8}$ $= 1.8 \times 10^{-3} \text{ s or } 1.8 \text{ ms}$ <p style="color: red; margin-left: 200px;">10^{-3}</p>	
5.4 p 198, print copy only	<p>152,098,200 km, a difference of 5 million km. The difference in radius between the two is about 1.5 per cent, which means the orbit is almost circular. For example, consider an ellipse</p> <p>Remove space between “about” and “1.5 per cent”</p>	Yes 10.1.26
5.4 Real World P207	<p style="color: red; text-align: center;">Most pass the</p> <p>Medium Earth orbit (MEO), altitude 1,200–35,790 km, period 2–24 h</p> <p>Uses: Global positioning satellites (GPS) at 20,000 km, microgravity experiments</p> <p>Features: Passes same spot twice a day; has short round-trip for signals; more solar radiation so it has a shorter life than LEOs</p>	No 10.1.26
5.4 WE 5.4B Page 203	$T_s = 1.0 \text{ day}, T_M = 28 \text{ days}, r_M = 3.8 \times 10^8 \text{ m}$ $r_s = ?$ $\frac{T_s^2}{r_s^3} = \frac{T_M^2}{r_M^3} = \text{constant}$ <p>Change 28 days to 27.3 days</p>	no 10.1.26
5.4 WE5.4B page 203	<p>Artificial satellites orbiting Earth</p> <p>A satellite is launched into orbit around Earth. Knowing that the natural satellite of Earth (the Moon) has a period of 28 days and an orbiting radius of $3.8 \times 10^8 \text{ m}$, calculate the desired orbital radius for the artificial satellite so that it has a period of 1 day. Give your answer to an appropriate number of significant figures. (4 marks) 27.3</p> <p>...change 28 days (line 3) to 27.3 days</p>	no 10.1.26

6.1 page 232	<p>What experiments are done using Coulomb's law?</p> <p>A great experiment to determine the charge on two spheres involves the use of two ping pong balls coated in conductive paint or wrapped in aluminium foil. The balls, each of mass m, are suspended from a common point by cotton threads of length L. When the balls are given equal positive charge, they move apart and finally settle in a rest position a distance r apart. This makes an angle θ to the vertical (Figure 13). Using vector diagrams and Coulomb's law calculations, we can work out the charge on the balls and compare</p>	<p>FIGURE 13 Diagram of the ping pong ball setup, along with a free-body diagram and a vector diagram of the forces</p>	no 10.1.26
6.2 WE6.2D	<p>Step 4: Calculate the field strength at C due to A using $E = \frac{kq}{r^2}$. Convert nm to m. (1 mark for "Calculates field strength at C by A")</p> <p>Step 5: Calculate the field strength at C due to B using $E = \frac{kq}{r^2}$. Convert nm to m. (1 mark for "Calculates field strength at C by B")</p>	$E_{CA} = \frac{9 \times 10^9 \times 3 \times 10^{-9}}{(0.30)^2} = 300 \text{ N C}^{-1}$ (1 mark) $E_{CB} = \frac{9 \times 10^9 \times 34 \times 10^{-9}}{(0.87)^2} = 401 \text{ N C}^{-1}$ (1 mark)	no 10.1.26
6.5 Data Drill page 270	<p>Data drill</p> <p>Effect of separation distance on force</p> <p>A pair of lightweight conductive ping pong balls were suspended from a common point by cotton thread (Figure 1). The balls were given an equal negative charge and allowed to come to rest. The distance apart was varied and the force between the balls was measured.</p> <p>positive</p>	no 10.1.26	
7.1 Fig 3	<p>Change the diagram in the bottom right to look like this. Note that the arrow heads have been corrected.</p> <p>FIGURE 3 Field lines around two magnets with like poles facing, and with unlike poles facing</p>	No 10.1.26	

7.2 Table 1 page 284	<p>Magnetic fields</p> $B = \frac{\mu_0 I}{2\pi r}$ <p>Field strength is directly proportional to the <u>current</u>.</p>	no 10.1.26
13.1	<p>Mesons 13.1 page 560</p> <p>Mesons are named from the Greek “mesos” meaning “middle”, because they are between protons and electrons in mass. Mesons are part of the hadron particle family and are defined simply as particles composed of a quark and an antiquark bound together by the strong nuclear force. All mesons are unstable, with the longest lived lasting for just under a second. They can carry an electric charge of -1, 0, or +1. Some examples of mesons are shown in Figure 3. The first meson is called a pion (π^+) and is shown in Figure 3A. It is made up of an up quark and an antideutron quark ($u\bar{d}$) and has a net electric charge of +1e. In this example the colours are red and antired (cyan), which add to white when combined. This is called colour neutral (white); all composite particles must be colour neutral.</p>	
Mod 14 Answers		??
U1&2 2.9 CYL2.9 Q7	<p>Physics for Qld U1&2</p> <p>CYL 2.9 Q7</p> <p>honey</p> <p>7 For a demonstration to introduce specific heat capacity to a Year 11 Physics class, equal masses of water, <u>ethanol</u> and paraffin were added to separate beakers and placed on a hotplate. After 2 minutes, the water temperature was measured as 60°C. Calculate the temperatures of the other two substances and organise them from lowest to highest temperature. (5 marks)</p>	no 10.1.26