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1. Introduction: 

1.1 Motivation: 

The power output of a hydroelectric generator depends on many parameters: the friction factor, turbine head 

loss, generator winding, etc, However, there is one factor that people tend to ignore: viscosity of the fluid, 

namely, the resistance of a fluid to change in motion. Consequently, the viscosity affects the rate at which the 

fluid flowrates through the generator, affecting its power output. Therefore, in this extended essay, I hope to 

investigate the physics behind the flow rate.  

 

1.2 The Hagen-Poiseuille law: 

For this paper, to investigate the effect of viscosity on the flowrate, we will be looking at a specific law in 

physics: the Hagen-Poiseuille law. This law could be derived from the Navier–Stokes momentum equations 

in 3D cylindrical coordinates (𝑟, 𝜃, 𝑥). Under this, the equation is derived to be: 

𝑄 =
∆𝑃𝜋𝑅4

8𝜇𝐿
                                                                            (1) 

However, there are a few constraints: 

 

 

Figure 1: Hagen-Poiseuille flow (Tec-Science 2021) 

 

- This law only works when the length of the pipe is relatively long compared with its diameter. The 

reason is that this law assumes parabolic flow. As shown in the image above, when the pipe is too 
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short, it will still be in the phase of inlet flow when the fluid comes out of the other side, which will 

invalidate the law. In other words, the flow must be steady and fully developed (Tec-Science, 2019).  

 

- The flow must be laminar: that is, the Reynold’s number (𝑅𝑒) is smaller than 2300. When the 

Reynold’s number is bigger than 2300, the flow will then be transition or turbulent, meaning that the 

pressure drop across the pipe will be higher than expected (SimScale 2021). 

 

- The fluid must be Newtonian, meaning that the viscosity of the fluid remains constant no matter how 

much shear is applied. Liquids such as oobleck, ketchup are non-Newtonian and therefore invalid for 

the law.  

 

- This law is usually worked for fluid flowing in a pipe from a reservoir: this implies that the water level 

above is constant, as is the pressure. However, in our experimental set-up, the height is time-dependent, 

so will be the pressure. We will see how the Hagen-Poiseuille law will work with a changing pressure.  

 

1.3 Variables: 

There are a few experimental preparations and observations that are essential to the procedure.  

The dependent variable tested is the average flowrate of water and 5 different concentrations of sucrose 

solutions. They are being tested how fast 470ml of each goes out of a pipe.  

 

The independent variable is the viscosity of the fluid. I chose water and 5 different concentration of sucrose 

solution, ranging from 30% to 65% concentration. Thus, 6 totally different viscosities were tested. 
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Control variables 

Variables How it was controlled 

Viscosity of the fluid The viscosity of the fluid needs to be kept under the same temperature as it has 

a dramatic effect on viscosity. The same granulated Rogers sugar to make 

solutions was used.  

Temperature Unfortunately, not all trials could have been kept at the same temperature. 

Therefore, I used the Arrhenius equation to adjust the values of viscosity as 

temperature changes and kept the effect of temperature constant in a sense. 

Length, radius of the pipe These dimensional properties of the pipe were all easily kept constant as the 

same pipe was used throughout. 

Motion sensor The same motion sensor was used throughout the experiment.  

 

2. Experimental procedure 

2.1 Experimental set-up: 

Figure 2, the whole experimental set-up                   

The tube is fixed by a lab stand. Using my 

fingers to block the bottom of the pipe, I pour in the 

liquid until the black mark, which is measured to be 

470ml. The, putting the collection rate at 20Hz, I start 

the PASCO motion sensor with position vs time graph 

collection and place the sensor on top of the tube. Now 

I can unblock the hole and a position vs time graph will 

start recording. I have put a bowl in front of the pipe to 

collect the fluid so I could reuse for the next trial. 

 

During the collection period, it is important for 

me to wait until the flow fully stops. Otherwise, 

because the flowrate decreases over time, it will be 
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easy to think the flow stopped although it has not. For 

high viscosity fluid, the flow will be very slow, and it 

was important to be patient.  

For each different viscosity, the trials were 

repeated about 8 times on average. This is because each 

trial is relatively time-consuming, and errors do rise 

during the trials. The common errors include but not 

limited to: the motion sensor not registering properly, 

wobbling tube and wobbling cup. Therefore, I will 

always have to eliminate 1-2 defective trials, and take 

6 valid trials in the end. The same procedure was 

repeated with 6 different liquids of different 

viscosities.                                                        Figure 3: a closer look at the motion sensor on top of the tube 

This particular methodology using a motion sensor is chosen because a motion sensor can be easily 

obtained in a physics classroom. Video analysis was also attempted but the motion gave a better result. The 

PASCO motion sensor allowed me to perform slope and line of best-fit calculations on the data. For video 

analysis, it was also very time-consuming to transfer all the videos from the phone onto the laptop. 

                               

Figure 4: Experiment in process:                                                  Figure 5: Measuring 300g of sugar to                   

water flowing out of the tube                                                                make 30% sucrose solution 



7 
 

2.2 Time taken for emptying: 

To determine the time taken, we look at the position versus time graph of the fluid level. The time between 

the two flat ends is the time taken, when the fluid stops flowing. Below is an example graph taken from one 

of the 50% sucrose solution trial. 

   Figure 6: An example taken from the 50% sucrose solution trial 

 

It might initially seem difficult to read where the endpoints really are from this graph, but as we zoom in 

separately, the endpoints are very clear.  

The starting point of the trial: 49.10s 

Figure 7: The starting point of the trial (zoomed in) 
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The PASCO motion sensor tends to have a small wobble at the start of each trial. However, from reading this 

graph, it is still obvious when the trial started: the initial flat line at 49.10s. 

The endpoint of the trial: 81.65s 

Figure 8: The ending point of the trial (zoomed in) 

 

 

The endpoint is fairly obvious as it is zoomed in. The height of the solution clearly stopped changing after t = 

81.65 seconds. The final time is then subtracted by the initial starting time to find the total time taken. 

 

∆t = Time taken = 81.65 − 49.10 = 32.55s 

 

 

 

 

 

 

 

 



9 
 

3. Experimental data 

3.1 Raw Data: 

Table 1: Experimental data of each trial 

Type of fluid Time taken 

for trial 1, 

𝑻𝟏 (s) 

(±0.05s) 

Time taken 

for trial 2, 

𝑻𝟐 (s) 

(±0.05s) 

Time taken 

for trial 3, 

𝑻𝟑 (s) 

(±0.05s) 

Time taken 

for trial 4, 

𝑻𝟒 (s) 

(±0.05s) 

Time taken 

for trial 5, 

𝑻𝟓 (s) 

(±0.05s) 

Time taken 

for trial 6, 

𝑻𝟔 (s) 

(±0.05s) 

water 18.10 18.15 18.10 18.45 18.20 18.35 

30% sucrose 

solution 

22.75 22.10 23.00 22.25 22.55 22.65 

50% sucrose 

solution 

32.20 31.90 32.15 32.55 31.75 32.15 

55% sucrose 

solution 

39.80 40.10 39.75 40.35 39.35 39.55 

60% sucrose 

solution 

49.75 48.75 49.10 48.00 48.90 50.00 

65% sucrose 

solution 

113.45 108.95 109.55 116.15 111.95 110.30 

 

The uncertainty in the time is chosen to be 0.05s because the sample rate of the motion sensor was 20.00Hz. 

1 second ÷ 20, this means that each datapoint is 0.05s away from each other and it is the lowest precision of 

time.  
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We will process the data and put them in Table 2. We will find the average of time taken, and the 50% sucrose 

solution will be used as an example to calculate for the average value of all the trials for a single solution,  

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑡𝑟𝑖𝑎𝑙 1 + 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑡𝑟𝑖𝑎𝑙 2 + ⋯

6
 

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
32.30 + 31.90 + 32.15 + 32.35 + 31.75 + 32.15

6
= 32.08𝑠 

To find the uncertainty, we calculate for the standard deviation, 

𝜎 = √
∑ (𝑥𝑛 − 𝜇)2𝑁

𝑛=1

𝑁
 

µ is the average of the trials, n is the trial number, 𝑥𝑛 is s the value of trial n, and N is the size of the sample 

(or total number of trials). Hence, σ for the sample calculation can be found as follows: 

𝜎 = √
(32.2 − 32.08)2 + (31.9 − 32.08)2 + (32.15 − 32.08)2 + (32.35 − 32.08)2 + (31.75 − 32.08)2 + (32.15 − 32.08)2

6
 

𝜎 = 0.2 

3.2 Viscosity: 

The viscosity of the sucrose solution was found from online sources. The values come from the International 

Journal of Food Properties and the ISCOTBALES, an reliable online database for engineers. The values were 

then cross-checked and proven to be correct. The sucrose solutions on the papers were indicated to be 

weight/weight. For example, for a 55% solution, it will be 550g of sugar and 450g of water. In addition, the 

paper gave out the uncertainties of viscosities to be 5%. 

 

Unfortunately, not all the trials were performed at 20℃ (293.15k) as the room temperature could not be always 

controlled. This happened for the 55%, 60%, 65% sucrose solution, in which it was at 22℃ (295.15k) instead 

of 20℃. Temperature can affect the viscosity and we will be adjusting the values accordingly.  

 

The viscosity could be adjusted using the following equation, the Arrhenius model (V.R.N.Telis, All, et al, 2006). 

𝐸𝑎 stands for the activation energy, R is gas constant, T is temperature of the sucrose solution, 𝑇𝑟𝑒𝑓 is the 

reference temperature of the sucrose solution (20℃) and 𝜇 is the viscosity.  
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μ = 𝜇𝑟𝑒𝑓𝑒𝑥𝑝 [
𝐸𝑎

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)]                                                       (2) 

Sample calculation using 60% sucrose solution, 

μ = 56.76𝑒𝑥𝑝 [
40696.29

8.31
(

1

295.15
−

1

293.15
)] 

𝜇 = 0.05069𝑃𝑎 ∙ 𝑠 

This is the corrected viscosity that we will be using for the calculation. The same correction will be done for 

other fluids as well.  

 

3.3 Density of fluids: 

According to the Hagen-Poiseuille equation, the density is a variable in it. It is also dependent on the 

temperature. However, no density adjustment will be made because first, there is not a formal equation to 

model the change. Second, the percentage difference is small, as the density of water at 21℃ and 26.7℃ 

(USGS 2018) is found to be 0.13%. A difference small enough to be ignored. The density at different sucrose 

solutions were calculated by me and cross-checked with external sources (ISCOTABLES 7ed), a reliable data 

booklet for scientists and engineers. Using the 55% sucrose solution as an example: The values are 550g of 

sugar with density 1.59𝑔/𝑐𝑚3 and 450g of water with density 1g/𝑐𝑚3. Similarly, for the 60% solution, it will 

be 600g of sugar, 400g of water, and so on. 

𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑀𝑡𝑜𝑡𝑎𝑙

𝑉𝑡𝑜𝑡𝑎𝑙
=

𝑀𝑠𝑢𝑔𝑎𝑟 + 𝑀𝑤𝑎𝑡𝑒𝑟

𝑀𝑠𝑢𝑔𝑎𝑟

𝜌𝑠𝑢𝑔𝑎𝑟
+

𝑀𝑠𝑢𝑔𝑎𝑟

𝜌𝑠𝑢𝑔𝑎𝑟

=
550 + 450

550
1.59

+
450

1

=
1.258𝑔

𝑐𝑚3
= 1258𝑘𝑔/𝑚3 

The density is 1258𝑘𝑔/𝑚3, and it matches with the external sources (ISCOTABLES 7ed).  

 

3.4 Flowrate: 

For each trial, the volume of the of fluid was kept at (470±5)𝑚𝑙. 

The flowrate formula is given below: 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 =
𝛥𝑣𝑜𝑙𝑢𝑚𝑒

𝛥𝑡𝑖𝑚𝑒
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Thus, to determine the flowrate, we calculate using the formula below, and note that the volume is the same 

for all the trials. The time is the average time determined from the previous calculations: 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 =
𝛥𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒
=

470 ± 5

32.08 ± 0.2
=

470

32.08
±

470

32.08
(

5

470
+

0.2

32.08
) = (15.59 ± 0.25)𝑐𝑚3/𝑠

≈ (15.6 + 0.3)𝑐𝑚3/𝑠 ≈ (0.0000156±0.0000003)𝑚3/𝑠 

It might seem weird to keep the values in 𝑚3/𝑠 instead of 𝑐𝑚3/𝑠. However, with the theoretical model that 

I am about to derive, it will be much easier to keep these values in standard units.  

3.5 Processed data: 

Table 2: All the processed data with some of their standard deviation (errors) 

Type of fluid Density, 𝜌, 

(𝑘𝑔/𝑚3) 

Viscosity, 

𝜇, (Pa∙ 𝑠) 

±5% 

Average time 

taken, 

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒, (s) 

Standard 

deviation of 

time taken, 

𝜎, (s) 

Flowrate, Q, 

(𝑚3/𝑠) 

Standard 

deviation in the 

flowrate, 𝜎, 

( 𝑚3/𝑠) 

Water 998 0.001 18.23 0.1 0.0000274 4× 10−7 

30% sucrose 

solution 

1128 0.003 22.55 0.3 0.0000222 5× 10−7 

50% sucrose 

solution 

1230 0.015 32.08 0.2 0.0000156 3× 10−7 

55% sucrose 

solution 

1255 0.025 39.82 0.3 0.0000126 2× 10−7 

60% sucrose 

solution 

1286 0.051 49.08 0.7 0.0000096 2× 10−7 

65% sucrose 

solution 

1316 0.130 111.73 2.5 0.0000042 2× 10−7 
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3.6 Additional notes:  

Range of data: The reason that the data didn’t go beyond 65% concentration is that it was physically impossible 

to mix 70% sucrose solution. In addition, if the fluid is too viscous, it will flow so slow that it will be difficult 

for the motion sensor to register the change in height. This problem already slightly occurred for the 65% 

concentration, and so the 70% will be even worse. The lowest concentration is chosen at 30% because any 

concentration lower than that have a viscosity that is too similar with water. 

 

4. Theoretical models 

4.1 Theoretical model: 

Figure 9: Sketch of the set-up (Drakaki & Sianoudis 2008) 

Here is a clarification of the terms in Figure 7 

and some that will be used in the upcoming 

derivation: 

The radius of the tube (r)  

Density of fluid (ρ) 

Radius of the pipe (R)  

Length of the pipe (L)  

Cross − sectional area of the tube (A) 

 Initial height of the fluid in the tube (h0) 

viscosity of the fluid (μ)  

Now starting off with the Hagen-Poiseuille law (eq.1), 

𝑄 =
𝛥𝑃𝜋𝑅4

8𝜇𝐿
 

And combine with the pressure given as a function of height and dependent on time, 

𝛥𝑃 = 𝜌𝑔ℎ(𝑡)                                                                       (3) 

𝑄 =
𝜌𝑔ℎ(𝑡)𝜋𝑅4

8𝜇𝐿
= −

𝑑ℎ

𝑑𝑡
𝐴, where 𝐴 =

𝜋𝑟2

4
                                                   (4) 
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Integrating both sides, 

∫ −
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑑𝑡 = ∫

𝑑ℎ

ℎ(𝑡)
          (5) 

      𝑙𝑛 ℎ(𝑡) = −
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡 + 𝐶                                                       (6) 

At 𝑡 = 0𝑠, C is equal to ℎ0, 

 ℎ(𝑡) = ℎ0𝑒
−

𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡
                                                            (7) 

Differentiating the equation, 

𝑑ℎ

𝑑𝑡
= ℎ0(−

𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
)𝑒

−
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡
                                                         (8) 

To find the flowrate, we multiply it by the area (A), 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 = 𝑄(𝑡) = 𝐴
𝑑ℎ

𝑑𝑡
= ℎ0(

𝜌𝑔𝜋𝑅4

8𝜇𝐿
)𝑒

−
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡
                                        (9) 

As we know, the flowrate that we got was the average flowrate, not the instantaneous one. To find the 

average, we do the following. This is the equation for the average flowrate.  

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑡𝑓𝑖𝑛𝑎𝑙−𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
ℎ0(

𝜌𝑔𝜋𝑅4

8𝜇𝐿
) ∫ 𝑒

−
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡𝑡=𝑡𝑓

𝑡=𝑡𝑖
                          (10) 

=
1

𝑡𝑓𝑖𝑛𝑎𝑙−𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
ℎ0(

𝜌𝑔𝜋𝑅4

8𝜇𝐿
)(

𝑒
−

𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡𝑓𝑖𝑛𝑎𝑙

−
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴

−
𝑒

−
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙

−
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴

)                              (11) 

𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is always 0s, so the latter part is just equal to 1. 

 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑡𝑓𝑖𝑛𝑎𝑙
ℎ0(−𝐴)(𝑒

−
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡𝑓𝑖𝑛𝑎𝑙 − 1)                                (12) 

In this equation, the density 𝜌, viscosity 𝜇 and time taken 𝑡 vary from fluid to fluid. The rest of the 

variables are all constant.     

This result is very notable. For this derivation, a time-dependent Hagen-Poiseuille law is derived. The 

relationship is exponential and affected by three variables. However, notice that density and viscosity are 

somewhat related, and the density variable has minimal effect on the equation. The final relationship is 𝑄 ∝

1

𝑡𝑓𝑖𝑛𝑎𝑙
(𝑒

−
𝑡𝑓𝑖𝑛𝑎𝑙

𝜇 − 1) instead of 𝑄 ∝
𝜌

𝜇
 as according to the Hagen-Poiseuille law.  
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4.2 Theoretical data: 

Using the average flowrate formula (eq.12), we verify using the measured variables. A sample calculation is 

done with the 50% solution. The following quantities, the dimensions of the tube, were measured using a 

Vernier calliper. The variables could be referred to Figure 7. 

𝑇ℎ𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑢𝑏𝑒, (𝑟) = (0.030 ± 0.005)𝑚  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑, (𝜌) =  1228𝑘𝑔/𝑚3 

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒, (𝑅)  = (0.0020 ± 0.0005)𝑚 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒, (𝐿)  = (0.060 ± 0.005)𝑚 

𝐶𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑢𝑏𝑒, (𝐴) =
𝜋𝑟2

4
=

𝜋(0.030 ± 0.005)2

4
  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑢𝑏𝑒, (ℎ0) = (0.62 ± 0.01)𝑚 

𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑, (𝜇)  = (0.0150 ± 5%)𝑃𝑎 ∙ 𝑆 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

32.08
0.62(−

𝜋(0.03)2

4
)(𝑒

−
(1228)(9.81)𝜋(0.002)4

8(0.015)(0.06)
𝜋(0.03)2

4

(32.08)

− 1) 

Using GDC, the final result is:  0.0000134𝑚3/𝑠, which is not too far from the experimental result, 

0.0000156𝑚3/𝑠. We now then repeat the same procedure for all the different fluids. 

Table 3: Theoretical average flowrate for each different viscosity 

Type of fluid Theoretical average flowrate, 𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , 𝑚3/𝑠 

Water 0.0000240 

30% sucrose solution 0.0000194 

50% sucrose solution 0.0000134 

55% sucrose solution 0.0000105 

60% sucrose solution 0.0000075 

65% sucrose solution 0.0000032 
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5. Graph of viscosity vs flowrate 

5.1 Graph of average flowrate vs viscosity 

Now, I will plot the graph for the average flowrate vs viscosity. There are no error bars for the theoretical 

values because they are calculated values and assumed to be correct. Viscosity has an error bar of 5% and 

the errors for experimental flowrate are taken from the standard deviations (Table 2). 

Figure 10: Average flowrate vs viscosity with experimental and theoretical values 

 

𝑸𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍(𝒓𝒆𝒅) = (−𝟒. 𝟐𝟒 × 𝟏𝟎−𝟔)𝐥𝐧 (𝟑. 𝟑𝟓𝝁)                                 (14) 

𝑸𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍(𝒃𝒍𝒖𝒆) = (−𝟒. 𝟕 × 𝟏𝟎−𝟔 ± 𝟏 × 𝟏𝟎−𝟕)𝐥𝐧 ((𝟐. 𝟕 ± 𝟎. 𝟑)𝝁)            (15) 

Qualitative observations 

The equations of Figure 10 are given above. By using the PASCO Capstone, a logarithmic relationship is 

found using the software’s best-fit function.   

 

Just from looking, the graphs (Figure 10) seem to match well. However, are logarithmic relationships really 

the best fit for these datapoints? According to Hagen-Poiseuille law, the flowrate decreases as viscosity 

increases, so the decreasing graphs make sense. Yet, there are 3 types of decreasing graphs. Logarithmic 

Experimental flowrate 

Theoretical flowrate 
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ln (𝑥), Exponential 𝑒−𝑥, Inverse 
1

𝑥
. From the equation 12 that I derived, I ended with a weird proportionality 

relation of 𝑄1 ∝
1

𝑡𝑓𝑖𝑛𝑎𝑙
(𝑒

−
𝑡𝑓𝑖𝑛𝑎𝑙

𝜇 − 1), in which there are two variables that are changing. According to Hagen-

Poiseuille law (equation 1), with 𝑄2 ∝
∆𝑃

𝜇
, it also has two variables changing. Hence, from just looking at these 

two proportionality equations, it is difficult to tell what kind of equations they will be. However, one thing is 

for sure: that the effect of viscosity, 𝜇, on 𝑄1 and 𝑄2, could not be pure exponential or inverse as there are two 

changing variables. Therefore, although without any mathematical analysis, ln (𝑥) could be a possible 

scenario. 

 

5.2 Further experimental verification of viscosity vs flowrate 

It seems from figure 10 that the theoretical and experimental values of the average flowrate seem to 

match. However, is it really the case? Just because the average is the similar, doesn’t mean that the trend is. It 

doesn’t tell the whole story. To verify that, I will plot the sample flowrate vs time graphs for both theoretical 

and experimental. In other words, I will show the instantaneous flowrates.  

 

Below is a graph for a trial from 50% solution, and equation could be found using the built-in function from 

PASCO software. 

 

Figure 11: A trial from the 50% solution 
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As we can see, for an equation of 𝑦 = 𝐴𝑒−𝐵𝑡 + 𝑦0, B, is −0.102. The A, C and 𝑦0 are irrelevant, because they 

only explain the position of the graph, but not the rate of change, aka, flowrate of the graph, which is what we 

are interested in. Hence the experimental B is  -0.102. Putting it into our equation of ℎ(𝑡) = ℎ0𝑒−𝐵𝑡, 

  ℎ(𝑡) = ℎ0𝑒−0.102𝑡, where ℎ0 𝑖𝑠 0.62𝑚                                                (13) 

Differentiating with respect to time, 

𝑑ℎ

𝑑𝑡
= | − 0.102(0.62)|𝑒−0.102𝑡 

Adding area (A) to find the experimental flowrate, 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 = 𝑸(𝒕)𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍 = 𝑨
𝒅𝒉

𝒅𝒕
= (

𝝅(𝟎. 𝟎𝟑)𝟐

𝟒
) 𝟎. 𝟏𝟎𝟐(𝟎. 𝟔𝟐)𝒆−𝟎.𝟏𝟎𝟐𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟒𝟒𝟕𝒆−𝟎.𝟏𝟎𝟐𝒕 

Theoretical flowrate: 

To find the theoretical flowrate, we use equation (5) from above, 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 = 𝑄(𝑡) = 𝐴
𝑑ℎ

𝑑𝑡
= ℎ0(

𝜌𝑔𝜋𝑅4

8𝜇𝐿
)𝑒

−
𝜌𝑔𝜋𝑅4

8𝜇𝐿𝐴
𝑡
 

Plugging in the values, 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 = 0.62(
(1228)(9.81)𝜋(0.002)4

8(0.015)(0.06)
)𝑒

−
(1228)(9.81)𝜋(0.002)4

8(0.015)(0.06)
𝜋(0.03)2

4

𝑡

 

Giving us the equation for theoretical Q(t), 

𝑸(𝒕)𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 = 𝟎. 𝟎𝟎𝟎𝟎𝟓𝟐𝟏𝒆−𝟎.𝟏𝟏𝟗𝒕 

We then repeat the same process with all the solutions. 

5.3 Graphs of instantaneous flowrate 

Now that there are equations for both 𝑄(𝑡)𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 and 𝑄(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙, they were graphed using google 

sheets.  

First, both equations were put down and the values at every second were generated. Then, with an appropriate 

timeframe (40s in this example), the x-y values were plotted separately and put on the same graph. Please 

refer to appendix part 1 for all sample calculations. 
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Figure 12: An example how the graph was constructed, including equations, generated points and the graph 

 

The following graphs were produced using the method outlined above.  

         Figure 13: Water solution                                                  Figure 14: 30% sucrose solution 

 

𝑄(𝑡)𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 0.0005635𝑒−1.449𝑡                                                                   𝑄(𝑡)𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 0.0002393𝑒−0.546𝑡                                                                                                                                       

𝑄(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 0.0000679𝑒−0.155𝑡                                                   𝑄(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 0.0000596𝑒−0.136𝑡 
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Figure 15: 50% sucrose solution                                           Figure 16: 55% sucrose solution 

 

𝑄(𝑡)𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 0.0000521𝑒−0.119𝑡                                                     𝑄(𝑡)𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 0.0000321𝑒−0.073𝑡 

𝑄(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 0.0000447𝑒−0.102𝑡                                                  𝑄(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 0.0000386𝑒−0.088𝑡 

 

Figure 17: 60% sucrose solution                                           Figure 18: 65% sucrose solution 

𝑄(𝑡)𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 0.0000161𝑒−0.036𝑡                                                     𝑄(𝑡)𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 0.0000064𝑒−0.015𝑡                                                                                             

𝑄(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 0.0000234𝑒−0.054𝑡                                              𝑄(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 0.0000109𝑒−0.025𝑡 

 

These graphs are interesting. For the 50% to 65% solutions, the theoretical and experimental graphs seem to 

match fine: although the bigger errors raised for the 60% and 65%.  However, for the water and the 30% 

one, it seems that the graphs do not match at all. Perhaps, it was only a mere mathematical coincidence that 

the theoretical and experimental values managed to match? 
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5.4 Error calculations: 

Now, going back to Figure 10, errors will be calculated by plotting the theoretical values against the 

experimental ones. If the data matches perfectly, then the resulting slope should be 1. If not, the appropriate 

error calculations will be done with the actual slope and the theoretical slope (1). 

Figure 19: Error propagation graph 

 

The following slope values are found: 

𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 = 0.908 

𝑚max 𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠 = 0.923 

𝑚min 𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠 = 0.874 

Note it is unitless because the axis both have 𝑚3/𝑠, so they cancel out. 
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Error propagation: 

𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 ± ∆𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 = 𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 ±
𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛

2
 

𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 ± ∆𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 = (0.908 ±
0.923 − 0.874

2
) 

𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 ± ∆𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 = (0.908 ± 0.0245) 

𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 ± ∆𝑚𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 ≈ (0.91 ± 0.03) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟

𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑚𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
× 100% =

0.03

0.91
× 100% = 3.29% 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =
|𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
× 100% =

|1 − 0.91|

1
= 9% 

 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑒𝑟𝑟𝑜𝑟 = |𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 − 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟| = |9 − 3.29| = 5.71% 

The detailed error propagation steps and results are listed above.  

 

6. Evaluation: 

6.1 Evaluation of the experimental set-up 

All the equipment used are standard laboratory set-up, such as the lab stand, the tube, the PASCO motion 

sensor, and an electronic balance. Therefore, the equipment used is accurate. However, the PASCO motion 

sensor could only take up to 20Hz; when going beyond that speed, the sensor does not register well. This is 

perhaps because of the rather narrow tube diameter and the transparent liquid. I could have added some black 

ink (it has minimal effect on viscosity) and see if this will make the motion sensor perform better. In addition, 

I could use a wider diameter tube.  
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6.2 Evaluation of the experimental procedure 

The first procedure is to make the sucrose solution at different viscosities. The viscosity values were directly 

taken from other papers, as even though I tried to set up a separate experiment to measure the values of 

viscosity by myself, they did not lead to an accurate value. I then must trust the external sources 

(ISCOTABLES, 7th ed) for these values. However, I did follow their procedure of making the solution weight 

by weight, and I use a balance with an uncertainty of ±0.1g, which is accurate. Another factor was the 

temperature, but I did use the Arrhenius model to adjust the values accordingly. If I have the equipment, I 

could use a viscometer.  

 

The wobbling tube is also a source of error. Especially towards the end of the flow, when the flowrate is slow, 

even a very small wobble could affect the distance reading from the motion sensor.   

 

6.3 Evaluation of the results 

The results obtained from this experiment displayed graphically and overall, they are accurate. The average 

flowrate, as shown in Figure 10, matches well with theoretical and experimental values, but when we did 

further verification with the instantaneous flowrate (Figure 13-18), it seems to be simply a mathematical 

coincidence for water and 30% solution. However, the 50% to 65% solutions are accurate. By doing error 

propagation on the theoretical and experimental values, there is a relative error of 3.29%, a percent error of 

9%, and a systematic error of 5.71%.  

 

6.4 Sources of errors: 

Turbulent flow 

The first error that arises is the accuracy of the Hagen-Poiseuille equation. As mentioned earlier, the equation 

requires the flow to be laminar. However, this is not always the case for this experiment. Let’s begin with the 

water trial: 

Verifying the flow using the Reynold’s number equation, where D is the diameter of the pipe, 

𝑅𝑒 =
𝜌𝑣𝑚𝑒𝑎𝑛𝐷

𝜇
                                                                          (16) 
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The mean velocity of the fluid, 

𝑣𝑚𝑒𝑎𝑛 =
𝑄𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝐴
=

𝑄𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝜋𝑅2
=

0.0000274

𝜋(0.0022)
= 2.18𝑚/𝑠 

Plugging in back to the equation 

𝑅𝑒 =
(
997𝑘𝑔

𝑚3 )(2.18𝑚/𝑠)(0.004𝑚)

(0.001𝑃𝑎 ∙ 𝑆)
= 8694 

 

𝑅𝑒 = 8694 > 2300, hence turbulent flow. 

Table 4: Reynold’s number for each viscosity 

Fluid Reynold’s number  Flow 

water 8694 Turbulent 

30% sucrose solution 2655 Transition 

50% sucrose solution 407 Laminar 

55% sucrose solution 179 Laminar 

60% sucrose solution 68 Laminar 

65% sucrose solution 13 Laminar 

 

This is one explanation for the errors between our data and the theory for water and 30% solution. So, if the 

flows are already non-laminar, there should be no reason for the theory to hold. To improve on this, we could 

model the turbulent flow with the Darcy–Weisbach friction factor and the Colebrook-White equation, but they 

are simply beyond the scope of this paper.    

 

Viscous flow: 

For the Hagen-Poiseuille Law to work, it requires the flow to be viscous. This makes sense since if we decrease 

the viscosity of the fluid infinitely, it implies that the velocity of the fluid will be infinitely big, which does 

not make physical sense. Hence, the equation is only valid for viscous flow, in which the viscosity of the fluid 

has a certain effect. If we look at the fluids I used, it turns out that the water is actually an example of non-
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viscous fluid. This explains the errors that arises with the water trial, why the initial theoretical flowrate was 

much bigger than the experimental one (Theo: 0.0005635𝑚/𝑠3 Exp: 0.0000679𝑚/𝑠3).   

 

However, unlike the Reynold’s number for turbulence, there isn’t a formal mathematical formula to determine 

whether a fluid is viscous or not. I can argue that it is the same scenario for 30% solution as well, since its 

viscosity was relatively low.  

 

Last few seconds of the flow: 

Figure 20: Last few seconds of the flow 

Figure 20 depicts what happens during the last few seconds of the flow. This 

is when the fluid could not fully fill the tube to produce a parabolic flow. The 

liquid is still flowing due to pressure and the motion sensor is still on, but it 

does not obey the Hagen-Poiseuille law. Our model cannot account for these 

last few seconds, giving systematic errors between the theoretical and 

experimental values. 

 

Limitation of the theoretical model: 

From the theoretical model (eq.12) I derived, 𝑄 ∝
1

𝑇𝑓𝑖𝑛𝑎𝑙
𝑒

− 
𝑇𝑓𝑖𝑛𝑎𝑙

𝜇 , I could not isolate the viscosity and write a 

relationship in terms of one variable. From our reasoning above, the final logarithmic equation seems 

plausible, but not mathematical deduced.  

 

7. Conclusion: 

Throughout the investigation of “Effects of viscosity of a working fluid on the flowrate and the limitations 

of the Hagen-Poiseuille law”, the relationship between viscosity and flowrate is confirmed to be logarithmic 

using the equation of the best fit from graphical model (figure 10). 
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𝑄𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = (−4.24 × 10−6)ln (3.35𝜇) 

𝑄𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = (−4.7 × 10−6 ± 1 × 10−7)ln ((2.7 ± 0.3)𝜇) 

When calculating the errors between the experimental and the theoretical values, a relative error of 3.29%, a 

percent error of 9%, and a systematic error of 5.71% are found. Overall, the experimental is accurate when 

looking at these values.  

 

I set-up an experiment to investigate how the viscosity could affect the flowrate, particularly in a situation 

where the pressure is not constant. I then verified the results using graphical methods and discussed the 

limitations of the Hagen-Poiseuille law in case of turbulent and non-viscous flow. 

 

Major sources of errors of the experiment include turbulent flow and non-viscous flow which affect the 

accuracy of the Hagen-Poiseuille equation. Other errors include the fact that my theoretical model could not 

account for the last few seconds of the flow, and that it is dependent on two variables: time and viscosity. This 

paper also relied heavily on external resources for the values of viscosities: although the values were crossed 

checked with 3 different academic papers, it would have been better if I could use a viscometer to measure 

the viscosities myself.  

 

I was able to compare my results with another paper (Drakaki & Sianoudis 2008, European Journal of 

Physics), and their results were similar: a decreasing relationship. This paper used more datapoints than mine, 

which is something that I could improve on.  

 

Areas of further research: 

- CFD (Computational Fluid Dynamics) simulations can be used to study and predict the behaviour of 

fluids at a higher viscosity because it will be unphysical to do so with a motion sensor, as the wait 

time is too long.  
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- Studies on how viscosity affects the performance of a hydroelectric generator: Its performance 

depends on the fluid’s flowrate, and viscosity slows it down. Will its performance decrease as well? 

- Repeat the experiment with a slow-motion camera and see how the results compare.   
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9. Appendix: 

1. (Part 1) Detailed images on how Figure 13-18 were generated using the method outlined in Figure 

12 
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60% sucrose solution 
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