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We performed an experiment on
elementary hydrodynamics. The basic
system is a cylindrical bottle from which
water flows through a pin-hole located at
the bottom of its lateral surface. We
measured the speed of the water leaving
the pin-hole, as a function of both the
time and the current level of water still
inside the bottle. The experimental results
are compared with the theory. The
theoretical treatment is a very simple one
based on mass and energy conservation,
corresponding to a widespread exercise
usually adopted in university basic
disciplines of physics.

We extended the previous experiment
to another similar system using two
identical bottles with equivalent pin-holes.
The water flowing from the first bottle
feeds the second one located below it.
The same concepts of mass and energy
conservation now lead to a non-trivial

differential equation for the lowest bottle
dynamics. We solved this equation both
numerically and analytically, comparing
the results with the experimental data.

Many university textbooks (see for example [1–7])
refer to the problem of water squirting freely from
a small hole in a bottle, as in figure 1. The water
speedV at the hole depends on the heightH of the
free liquid surface above the pin-hole, according
to Torricelli’s law

V 2 = 2gH (1)

whereg represents the acceleration due to the force
of the Earth’s gravity. This result was obtained by
Galileo’s assistant E Torricelli in 1636 [7]. It is
normally obtained nowadays through Bernoulli’s
theorem

p + 1
2ρV

2+ ρgy = C (2)

introduced by Daniel Bernoulli in his book on
hydrodynamics of 1738, which appeared a century
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Figure 1. Experimental apparatus used in our test
of Torricelli’s law. Successive values of the height
H were read off from a scale previously glued on
to the bottle surface, with points 0.5 cm apart from
each other. The corresponding speed of the water
flowing at the pin-hole was indirectly measured
using the distance X read off the horizontal rule.
Successive times T were also measured during
the flow.

after Torricelli’s law. Here,ρ represents the liquid
density, whilep, V andy are the local hydrostatic
pressure, speed and height, respectively, all
measured at the same point inside the liquid. The
constantC means that the sum on the left-hand
side stays the same, independent of the particular
point where the measurements are performed. In
our case, one must take two points: the first at the
free liquid surface inside the bottle, withy = H ,
neglecting the speed there; and the second point
just after the pin-hole, withy = 0, outside the
bottle. The hydrostatic pressure at these two points
is the same, namely the atmospheric pressure.
Equation (1) follows directly. This theorem holds
for stationary liquid flows, and comes from energy
conservation arguments. Thus, in adopting it one
is neglecting any energy loss due to viscosity,
turbulence, etc.

Because the downward speed of the free liquid
surface inside the bottle is neglected, there is a
missing factor of(1 − a2/A2) on the left-hand

side of equation (1), whereA anda represent the
cross sections of the bottle and the liquid vein
(outflow diameter of the pin-hole), respectively.
This correction comes from equation (7) to be
introduced later on. The cylindrical bottle used
in our experiment has a diameter of 9.5 cm,
and the pin-hole is made of a thin plastic tube
(extracted from a ballpoint pen) whose diameter is
2.0 mm. Thus, the neglected factor of(1−a2/A2)

represents a relative deviation of the order of 10−7,
much smaller than our experimental accuracy.
Also, the liquid vein cross sectiona is a little
bit smaller than that of the pin-hole, due to the
phenomenon ofvena contracta[3, 5, 7].

The text is organized as follows. In the next
section we describe our first, simplest experiment
with a single bottle (figure 1), where we measured
simultaneously the speedV and the timeT elapsed
from the initial heightH0, while the bottle drains
off, for successive values of decreasing height
H . The speeds are indirectly obtained from
the distanceX measured on the horizontal rule
located at a fixed height below the bottle:X
is thus proportional toV . In order to compare
our experimental results with the theory, a simple
correction is made to Torricelli’s law, taking
energy losses into account. We also obtain the
solution of Bernoulli’s differential equation (2) for
this case, giving the time evolution ofV (T ) and
H(T ) during the flow, comparing them with the
experiment. In the subsequent section we describe
our second experiment with two identical bottles
(figure 2), where the water flowing from the first
bottle is caught by the second through a funnel.
Initially, the bottles are equally filled, and then
both flows start at the same time. Since we had
already verified the validity of Torricelli’s relation
with good accuracy from the first experiment,
we used the value determined in this way in
the second experiment, instead of measuring the
bottom velocityV ′. Our accuracy in measuringH
(or H ′) is better than the corresponding accuracy
for X (or X′ or V ′). Thus, in this second
experiment we measured only the time evolution
of H ′(T ). In this case, the analytical solution
for Bernoulli’s differential equation is not trivial,
and we solved it numerically. Nevertheless, the
analytical solution could be obtained by using
some tricks. The results are compared with the
experiment. Finally we present our conclusions.
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Figure 2. Two-bottle experiment, where the water
flowing from the first bottle is caught by the
second through a funnel. Successive heights H ′
were measured as a function of the time.

The one-bottle experiment

The water flows through a horizontal thin plastic
tube installed at the pin-hole. A (parallel) rule is
placed below the pin-hole at a distanceY0. Thus,
the ‘fall’ time of a small ‘segment’ of water is√

2Y0/g. This is the constant of proportionality
between the measured distanceX in figure 1 and
the speedV , i.e.

V = X√
2Y0/g

.

The water flow is started by one of the authors,
responsible for measuring the heights, from an
initial valueH0 = 20.0 cm, at timeT = 0. At this
same instant, another author starts a chronometer
with a memory (actually, a computer program
which stores the time elapsed sinceT = 0 each
time some key is hit), and a third author reads the
value ofX off the rule. A fourth author records
this value. The whole procedure is repeated at
intervals ofH = 0.5 cm. At the end, one has
a three-column table withH , T andX (this last
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Figure 3. Squared range X 2 versus height H for
the one-bottle experiment shown in figure 1. Our
estimated error bars are represented by the size
of the symbols. The straight line is the best linear
fit for the experimental data. The inner diameter of
the bottle is 9.5 cm, and that of the pin-hole tube
is 2.0 mm. The initial height is H0 = 20.0 cm,
according to which we measured the initial
horizontal range X0 = 28.0± 0.3 cm.

being proportional to the speedV ). The initial
rangeX0 = 28.0 ± 0.3 cm was measured for
Y0 ' 11 cm (for the sake of clarity, figure 1 shows
a larger separation, but our actual measurements
were all taken withY0 ' 11 cm), correponding
to an initial speedV0 ' 1.9 m s−1, supposing
g ' 9.8 m s−2. However, one does not need to
perform the transformation fromX to V : we will
always useX instead ofV . In doing so, we do
not have to worry about precise measurements for
Y0 andg.

Figure 3 shows the plot of the squared range
X2 versus the heightH , which must be a straight
line, namelyX2 = 4Y0H , according to Torricelli’s
law, equation (1). However, our experimental
straight line does not cross the origin! On
the contrary, the best linear fit for our data,
the continuous lineX2 = K(H − R) with
optimum values forK and R, crosses theH
axis at a minimum residual heightR = 2.05 cm.
Indeed, during the experiment, we noted that the
continuous water flow ceasesbefore the surface
level inside the bottle reaches the pin-hole. This
precociously interrupted flow occurs when the
height is still around 2 cm. At this point, the
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surface tension inside the thin tube is enough to
compensate the overpressure due to the residual
level height, except for isolated drops which start
to appear after this point. Even before this, for
heights below 5 cm, we could note that the water
flow leaving the pin-hole is no longer completely
stable, as it was for the initial heights above 5 cm:
some oscillations and instabilities appear below
that height, as commented on later.

Anyway, equation (1) is not supposed to fit
the experimental data, for which we cannot neglect
energy losses. Indeed, the sumC in equation (2)
is not strictly the same for all positions inside the
liquid, but must be smaller at the pin-hole exit
than inside the bottle. This behaviour is expected
because viscosity and turbulence lead to energy
losses when the liquid passes through the thin
tube. When applying Bernoulli’s equation (2) for
a point at the free liquid surface and another point
at the pin-hole exit, one must take into account an
energy density correction from the former value.
We will assume here that this amount is the
same throughout the flow, which corresponds to
subtracting a constant from the kinetic energy term
in equation (2), or, alternatively, subtracting a
constant heightR from the actual heightH . With
this correction, Torricelli’s law becomes

V 2 = 2g(H − R) (3)

instead of equation (1), where the residual heightR

is a constant. Indeed, our experimental data agree
quite well with this modified form of Torricelli’s
law, equation (3), as can be seen in figure 3.
Also from figure 3, one can measure the slope
K = 4Y0 = 43.36 cm, which is in close agreement
with the rule’s vertical distanceY0 = 10.8 cm.

The subtracted termR = 2.05 cm corresponds
to an energy densityρgR dissipated at the thin
tube, i.e. the lost energy per unit volume of
liquid. Thus, considering the outflow rateaV ,
i.e. the volume of liquid crossing the tube per
unit time, one obtains an energy dissipation rate,
i.e. a dissipated powerρgaRV proportional to
the speedV . This energy dissipation comes
from the fact that different points correspond to
different liquid speeds: small portions of water
near the internal walls, inside the thin tube,
move more slowly than those near the tube axis.
The relative displacement between adjacent liquid
layers dissipates the energy (cylindrical layers
inside the thin tube). The constancy ofR during
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Figure 4. As in figure 3, but for a different bottle
with a different pin-hole. The inner diameter of the
bottle is 5.1 cm, while that of the pin-hole tube is
3.5 mm. The initial height is H0 = 42.0 cm, and the
corresponding initial horizontal range is
X0 = 44.0± 0.3 cm.

the whole flow, experimentally supported by the
straight line behaviour in figure 3, means that the
energy dissipation occurs according to a constant
resultant viscous forceρgaR ≈ 6× 10−4 N. Of
course, the particular value of this force must
depend on the liquid’s viscosity, and also on
the characteristics of the thin tube itself, e.g. its
diameter and length, the material of which it is
made, etc. Thus, the value of this constant will
change depending on the experimental apparatus.
In order to test this, we performed the same
experiment once again, by using another bottle,
now with an inner diameter of 5.1 cm and initial
height H0 = 42 cm, with another pin-hole.
The experimental results are shown in figure 4.
The straight line behaviour agrees again with our
modified version of Torricelli’s law, equation (3).
The thin tube is now metallic, with an inner
diameter of 3.5 mm. Accordingly, the new value
R = 4.81 cm corresponds to a larger resulting
viscous force of 5×10−3 N, approximately 7 times
larger than that of our first bottle. However, this
new value is again constant during the whole flow.
For this new bottle, we start to observe oscillations
and instabilities of the outflow belowH ≈ 12 cm.
For H ≈ 8 cm these instabilities become strong
enough to make accurate measurements ofX

impossible.
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It is possible to make our results independent
of the particular geometry of the (cylindrical)
bottle used during the experiment, provided the
condition a � A remains valid. In order to
do such an universal (bottle-independent) analysis,
instead of the quantitiesH and V denoted by
capital letters, we will adopt the following lower
case, dimensionless, reduced variables

h = H − R
H0− R (4)

and

v = V

V0
= X

X0
. (5)

With these definitions, the modified Torricelli’s
law, equation (3), reads simply

v =
√
h. (6)

Figure 5 shows a plot of the experimental values
of v versush, as well as the continuous curve
corresponding to the theoretical equation (6). Data
from both bottles, presented first separately in
figures 3 and 4, are now superimposed into the
same plot, defining a single, universal, bottle-
independent curve. Except for small deviations at
the end of the flow, near the origin in figure 5, the
agreement between theory and experiment is quite
good. A better test for Torricelli’s law is shown in
figure 6, where the same experimental data were
plotted on a log–log scale. The continuous line
is the best linear fit for our first bottle (circles),
excluding data taken forH < 5 cm, where the
quoted flow instabilities and oscillations started
to be noted by us during the experiment. The
slope of 0.497 we obtained must be compared
with the exponent 1/2 of the square root appearing
in equation (6). For the other bottle (crosses),
excludingH < 12 cm, we obtained a slope of
0.501.

Hereafter, all our remaining experimental
results correspond to the bottle geometry shown
in figure 1, because the measurements are
more accurate in this case (note the number of
experimental points in figure 3, more than twice
the corresponding number in figure 4). When
the stream of liquid crosses the rule heightY0

below the pin-hole, it is not completely stable,
presenting some fluctuations as visible in figure 1.
In measuringX, we are forced to estimate an
‘average’ value at each measurement. Our actual
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Figure 5. Experimental speed versus height.
Different symbols correspond to the same
experiment performed with different bottles with
different pin-holes, according to figures 3 (circles)
and 4 (crosses). By adopting the dimensionless,
reduced variables v and h, defined by equations
(4) and (5), our results become independent of the
particular geometrical dimensions of the bottle and
the pin-hole: both data sets can be superimposed
into the same, universal, bottle-independent curve.
The continuous curve corresponds to the
theoretical Torricelli’s law, equation (6).
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Figure 6. Same experimental data as figure 5.
Now, the continuous line is a linear fit for the
circles, excluding the last points of the flow where
instabilities and oscillations appear. The slopes
measured for each different bottle must be
compared with the exponent 1/2 of the square
root appearing in equation (6).
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Figure 7. Time evolution of the speed v. The
continuous line is the best fit excluding heights
H < 5 cm, below which an intermittent flow regime
starts to be observed.

measurements were made at a vertical heightY0 '
11 cm in order to minimize these fluctuations
(in figure 1, theY0 distance is exaggerated for
clarity). Indeed, the flow seems very stable
near the pin-hole, at least for large values of
the heightH . Since we have already shown
good agreement between theory and experiment,
concerning the modified Torricelli’s law, hereafter
we will use equations (4) and (6) in order to
obtain the reduced velocityv from the actually
measured heightH , instead of equation (5) with
the measured horizontal rangeX. The reason
for that is the improved accuracy in measuring
H at the marks previously glued on the bottle
surface, compared with the values ofX read off
the horizontal rule. From now on, we will study
the complete flow dynamics instead of only the
instantaneous Torricelli’s relation between speed
and height.

Figure 7 exhibits the reduced speedv as a
function of the timeT elapsed since flow started
from an initial heightH0 = 20.0 cm. The
continuous line is the best linear fit, excluding
the last six points where instabilities at the pin-
hole start to be noted. According to this fit,
the complete flow takes a timeT0 = 526 s.
The real time, however, is smaller than this,
something around 450 s, according to the last
point in figure 7. ForH < 5 cm the flow at

the pin-hole starts to present small intermittent
bursts superimposed on the continuous, stable
flow observed previously. This phenomenon is
more and more clearly observed as time goes
by, until only isolated drops can be observed
at the end, below the residual heightR, with
no traces of any underlying continuous flow.
This continuous-plus-intermittent flow is more
effective in draining off the bottle faster than
would be the previously observed pure-continuous
flow, according to the straight line in figure 7.
Also, Bernoulli’s theorem, even with our constant
energy correction subtracted at the pin-hole, is
no longer valid: it supposes that one has a
stationaryflow. The theoretical treatment of this
intermittency problem is a very difficult task,
and many interesting complex phenomena can
be observed experimentally [8]. No satisfactory
analytical approach is available, although some
computer simulations based on a stochastic simple
model seem to capture the essential physical
ingredients governing the phenomenon [9]—see
[10] for a review.

Before the intermittent regime arises below
H ≈ 5 cm, however, Bernoulli’s theorem can be
applied to our bottle flow, in order to compare
the results with the dynamical experimental
counterparts shown in figure 7. One also needs
to include the conditon that the liquid is not
compressible, i.e.

aV = −AdH

dT
(7)

where a and A are the cross sections already
mentioned. The result is a simple differential
equation, namely

dV

dT
= − a

A
g. (8)

According to this result, the speedV (or v)
decreases linearly as time elapses, just as can be
seen in the experimental plot, figure 7, before
the intermittent regime starts to appear. Also
according to this result, the complete draining time
would be [5]

T0 = AV0

ag
= A

a

√
2(H0− R)

g
. (9)

Taking our experimental valuesT0 = 526 s,
H0 = 20.0 cm andR = 2.05 cm, adoptingg '
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9.8 m s−2, and considering a bottle diameter of
9.5 cm, we can estimatea. As already mentioned,
a is not the cross section of the pin-hole, but
that of the liquid vein (vena contracta). Indeed,
equation (9) gives a diameter of 1.8 mm for the
vena contracta, which is a little bit smaller than
that of the actual pin-hole, namely 2.0 mm.

From now on, we will also use a lower case,
dimensionless, reduced variable

t = T

T0
(10)

when referring to the time. With this notation, the
theoretical time evolutions of the reduced speed
and height are simply

v = 1− t (11)

and
h = (1− t)2 (12)

again independent of the particular (cylindrical)
bottle actually used during the experiment. Both
the experimental and theoretical values for these
evolutions are shown in figure 8. Once more,
deviations between theory and experiment are
visible at the end, where the flow starts to
present an intermittent, non-stationary component.
Note, in particular, that the final height (R '
2 cm within the particular geometry of our
bottle, corresponding toh = 0 in figure 8) is
actually reached faster than it would be according
to the completely stable flow observed before
(theoretical, continuous curve). The intermittency
appearing at the end of the whole process helps to
drain off the bottle more quickly.

The two-bottle experiment

Considering now the system shown in figure 2,
in applying condition (7) to the lowest bottle, one
needs to take into account the extra amount of
water coming from the upper bottle. It reads now
as

a(V ′ − V ) = −AdH ′

dT
(13)

where the heightH ′ and the speedV ′ refer to the
lowest bottle, being related to each other by the
same modified Torricelli’s law

V ′2 = 2g(H ′ − R) (14)
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Figure 8. Time evolution of the dimensionless
speed v (upper curve) and height h (lower curve),
as functions of the dimensionless time, equation
(10). Experimental and theoretical values agree
very well with each other, except for the last few
points where the flow is no longer stationary.

already verified in our first experiment, withR =
2.05 cm. Both the bottles and the pin-hole tubes
are identical. We define the reduced speed

u = V ′

V0
(15)

analogously to equation (5). The time evolution of
u follows the dimensionless differential equation(

1+ du

dt

)
u = 1− t (16)

which is the same as equation (13), after being
simplified using (14), (15), (9) and (11). Here,t is
the same reduced time already defined in equation
(10).

One can solve this equation numerically, by
dividing the time interval 06 t 6 1 into N

equal subintervals. The lower case indicesn =
0, 1, 2, . . . , N represent the discretized times at
the borders of these subintervals, i.e.tn = n/N ,
while un represents the value ofu at time tn. The
derivative in equation (16) will be replaced by the
approximation

du

dt
≈ un+1− un

1/N
(17)

where 1/N is the size of each subinterval. This
approximation is as good as we need, provided a
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large value forN is adopted. In other words, the
numerical solution we will obtain is exact in the
sense that one can always keep the errors below
any predefined tolerance, no matter how exacting
the user who chooses the degree of tolerance is.
Equation (17) stands for the derivative ofu taken
at the centre of the subinterval, i.e. at time

t = n+ 1/2

N
(18)

which is the value replacingt on the right-
hand side of equation (16). Accordingly, another
approximation, namely

u ≈ un+1+ un
2

(19)

will replaceu outside the parentheses on the left-
hand side of (16). Then, by performing these
replacements, equation (16) is transformed into a
second degree equation forun+1 whose solution is

un+1 ≈ 1

2N

[√
(2Nun − 1)2+ 8(N − n)− 4− 1

]
.

(20)
Now, one needs only to choose a convenient value
for N , program this equation on a computer (or
even a pocket calculator) and process it starting
from u0 = 1 with n = 0 on the right-hand side.
The result will be the next value, i.e.u1. Then,
repeating the same program with this recently
obtained value foru1 andn = 1 on the right-hand
side, one getsu2. After repeating this processN
times, one has the complete functionu(t) along
the interval 06 t 6 1.

The lower bottle is fed by the upper one, up
to t = 1 when the upper flow ceases. However,
at this time the lower bottle is still draining with a
reduced speedu∗. From this moment on, there is
only one flowing bottle, as in our first experiment.
Thus,u will decrease linearly, starting withu = u∗
at t = 1, at the same constant rate observed
in our first experiment, namely du/dt = −1.
The flow from the lower bottle finally also ends
at t = 1 + u∗. The valueu∗ is then a key
parameter for our system. By running our program
for equation (20) withN = 100, we obtained
u∗ = 0.546 301 91. Running it again withN =
1000, we gotu∗ = 0.546 293 10, which means
thatN = 100 is sufficient to achieve accuracy up
to the fourth decimal figure, corresponding to a
relative deviation of the order of 10−5, far below

our experimental accuracy. By running the same
program withN = 10 000, and once again with
N = 100 000, which takes much less than one
second on a PC, we obtained

u∗ = 0.546 293 02 (21)

in both cases, meaning that this value is the exact
figure, at least up to the eighth decimal figure.

From equation (16) one can verify two limiting
cases. First, neart = 0, one must haveu '
1 − t2/2. Note that the first derivative ofu
vanishes att = 0, as it must at the beginning
because the outflow of the lower bottle is exactly
compensated by the inflow coming from the upper
bottle (remember that both bottles start from the
same initial heightsH0 = H ′0). Second, in
reaching t = 1 from below, one has du/dt =
−1, compatible with the one-bottle constant flow
regime which will be installed from this moment
on. Both limiting cases can also be observed
in equation (20), namelyu1 ' 1 − 1/2N2 and
uN − uN−1 ' −1/N .

Alternatively, one can solve equation (16)
analytically, by replacingu by ω(1 − t), which
allows one to separate the variablest andω into
different sides of the resulting equation, i.e.

dt

1− t =
ω dω

1− ω + ω2
. (22)

Performing the integration, one finally reaches the
ugly analytical solution

1− t =
exp

(− π

6
√

3

)
exp

[− 1√
3
tg−1

(
2ω−1√

3

)]
√
ω2− ω + 1

.

(23)
Going back tou = ω(1 − t), we have plotted
u versus t from this solution, a task which
requires much more computer time than the whole
processing of the numerical solution (20). The
resulting plot is indistinguishable from the one
obtained numerically withN = 100. Also, by
taking the limitt → 1 in this solution, we obtained

u∗ = exp

(
− π

3
√

3

)
(24)

in complete agreement with the numerically
obtained value (21).

The above paragraphs of this section concern
what the theory says about our two-bottle
experiment. We have also measured the successive
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Figure 9. Experimental time evolution of the
dimensionless speed u of the lower bottle, as a
function of the dimensionless time, in the
two-bottles experiment (figure 2). The continuous
curve corresponds to the theoretical result.

heightsH ′, from which we obtained the reduced
speed

u =
√
H ′ − R
H0− R (25)

as a function of time. The result is plotted in
figure 9, together with the theoretical continuous
curve. The point denoted by P corresponds tou∗

at t = 1. Our experimental value is

u∗ = 0.535 (26)

obtained by interpolating the two experimental
points which are nearest tot = 1. The
relative deviation between theory and experiment,
concerning this value, is only 2%. In performing
the experiment, we have been careful to interrupt
the upper flow as soon as the top bottle reaches
the residual levelR ' 2 cm. After this, only
isolated drops would feed the lower bottle, but they
were not included in our one-bottle, continuous
flow analysis which ends at the residual levelR.
Thus, this further flow from isolated drops cannot
be included in our two-bottle experiment.

Note again deviations at the end of the flow,
similar to those that have already appeared in
the one-bottle experiment: the last points are
located below the theoretical straight line, because
the intermittent flow regime accelerates draining.

Note also the smaller deviations appearing just
before t = 1; now, the experimental points lie
abovethe theoretical curve. This is so because the
accelerated draining of the top bottle, due to the
intermittent flow occurring just beforet = 1, feeds
water into the lower bottlefaster than it would
according to the theoretical, continuous flow.

Conclusions

We performed a simple experiment on elemen-
tary hydrodynamics, verifying the validity of Tor-
ricelli’s law, equation (1), relating the heightH
of the free surface of water in a bottle with the
speedV at which the liquid flows through a pin-
hole. The speeds are indirectly measured through
the horizontal rangeX (figure 1). In order to take
energy losses into account, a simple correction was
introduced into this law: equation (3) replaces the
original form (1). According to our experimental
observations (figures 3 and 4) the residual height
R subtracted fromH in order to take energy losses
into account is a constant during all the flow. We
have also measured the dynamical evolution of this
system, i.e. the dependences of bothH andV on
the timeT , comparing the results with the theo-
retical framework of Bernoulli’s theorem. We also
performed another experiment, using two identical
bottles, the liquid flowing from the first bottle feed-
ing the second one. In this case, we determined
a non-trivial differential equation from the same
framework. It was solved both numerically and
analytically, and the results were compared with
the experimental dynamical evolution.

We believe that such simple experiments can
be reproduced by students, in order to better
understand elementary hydrodynamic concepts.
Also, other similar systems—e.g. those quoted as
examples, exercises and problems in references
[5–7]—could be experimented on along the same
lines presented here. In such experiments, the
fixed parameters characterizing each bottle are:

• the initial heightH0;
• the initial speedV0;
• the residual heightR, experimentally obtained

through a plot ofV 2 versusH (figures 3 and
4); and

• the total timeT0 required to drain the bottle,
experimentally obtained through a plot ofV
versusT (figure 7).
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On the other hand, the dynamical variables
depending on the timeT during the flow are:H
and V for our one-bottle experiment (figure 1);
or H ′ and V ′ for our two-bottles experiment
(figure 2). Nevertheless, neither the expressions
of these dynamical variables as functions of
the time nor the mathematical relation between
them would depend on the particular geometry
of the cylindrical bottles and pin-holes actually
used in the experiments. In order to stress
this independence, we adopted the reduced,
dimensionless, bottle-independent variablesh, v, t
andu defined by equations (4), (5), (10) and (15).
According to these dimensionless variables, the
theoretical equations (6), (11), (12), (20) and (23)
can be experimentally tested with other bottles,
different from those we used here. We also believe
that students should be introduced as often as
possible to the very good scientific practice of
using universal variables, independent of particular
implementations or parameters.
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