Wine Glasses, Bell Modes, and Lord

Rayleigh

By Thomas D. Rossing

Many physics teachers, in a lecture demonstration or
at the dinner table, have rubbed the edge of a wine glass
with a moist finger to make it sing. But how many of us
could correctly describe the vibrational motion of the
glass?

Test time! Before you read any further, try to answer
the following questions:

1. When you rub the glass, are you exciting standing waves,
traveling waves, or both?

2. Are sound waves excited in the glass?

3. Does the glass move in the direction of a diameter, in
the direction of the circumference, or both?

4. Does the frequency go up or down when you add water
(or wine) to the glass?

5. If you rub two glasses that have identical diameters but
different thicknesses, which glass will have the higher
frequency?

6. If you rub two glasses of the same thickness but with
different diameters, which glass will have the higher
frequency?

7. If you rub two glasses of the same thickness and diam-
eter but having different heights, which glass will have
the higher frequency?

If you have difficulty answering any of these questions,
don’t feel bad. I have found incorrect answers to nearly all
of them in physics textbooks. Fortunately, Raylelgh gave
us most of the correct answers a hundred years ago, and
French? has more recently discussed the theory in consid-
erable detail.
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Fig. 1. Side view and end view of a bell vibrating in two of its
lowest modes, having two and three nodal meridians.

To understand the vibrational motion of the glass, we
should first note that tapping the glass with a spoon excites
it to vibrate at essentially the same frequency as does
rubbing its edge. This suggests that the motion is both
radial and tangential and provides answers to Questions 2
and 3. In fact, tapping the glass excites a number of "bell
modes," whereas rubbing it mainly excites the lowest of
these, the (2,0) mode, with two nodal meridians (the same
one that radiates the hum note of a bell; see Fig. 1).3’
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Wine Glasses...

An interesting feature of bell modes is their similarity
to the vibrational modes of a flat plate. Nodal meridians
replace the modal diameters of flat plates; we attach alabel
(m,p) to the mode that has m complete (over-the-top)
meridians and n nodal circles. (By slightly modifying
Chladni’s law it is possible to apply it to a wide variety of
nonflat c1rcular plates, including tuned church bells and
carillon bells.® ) In a flat circular plate, a carillon bell, or
awine glass, the fundamental mode of vibration is the (2,0)
mode, having two complete nodal meridians (or diame-
ters) and no nodal circles. The frequency of this mode is
proportional to thlckness in all three cases, because plate
stiffness increases with 1% but mass is only proportional to
t. So if you answered Question 5 by saying that the thicker
glass has the higher frequency, you are quite correct. Of
course adding water only adds mass, so the frequency goes
down (Question 6).

Let’s take an-
other look at
Question 3. Toa
first approxima-
tion at least, the
upper rim of the
glass changes
from circular to
elliptical twice
per cycle, as
shown in Fig. 2.
If we assume that
the motion is al-
most entirely
flexural (as op-
posed to exten-
sional), we see
that there must
be both radial
and tangential motion. The radial and tangential compo-
nents of the motion are proportional to m sin m68 and cos
mo, respectivcly;6 for the (2,0) mode the maximum tangen-
tial motion is half the maximum normal motion. In general
the maximum tangential amplitude is 1/m times the maxi-
mum normal amplitude, and each occurs at a minimum of
the other.! We can excite the glass to vibrate either by
striking it (in the normal direction) with a spoon or by
rubbing it (in the tangential direction) with our finger. In
his lecture demonstrations, Rayleigh apparently used to
excite large bells by bowing them (in the normal direction)
with a violin bow.

Rayleigh describes an interesting experiment that I
have not yet tried to duplicate (but perhaps some reader
has). A glass bell jar ("air-pump receiver," he calls it) is set
into vibration by rubbing the edge with a moistened finger.
"A small chip in the rim, reflecting the light of a candle,
gave a bright spot whose motion could be observed with a
Coddington lens suitably fixed. As the finger was carried
round, the line of vibration was seen to revolve with an
angular velocity double that of the finger; and the amount
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Fig. 2. Top view (exaggerated) of a wine-
glass vibrating in its fundamental mode
(similar to the 2,0 mode in Fig. 1). Form
= 2, the tangential amplitude is half the
normal amplitude.

of excursion (indicated by the length of the line of light),
though variable, was finite in every position." What I think
Rayleigh is describing is a rather complicated stick-slip
(tangential) motion, somewhat like the so-called Helm-
holtz motion of a bowed violin string.8 No doubt someone
has investigated wine-glass motion using modern strobo-
scopic and photographic equipment, but I am not aware
of any report in the published literature.

How do we answer Question 1? I would think that we
are observing standing waves resulting from flexural waves
racing around the glass in both directions (at a speed much
greater than our finger can move). While our finger is in
contact with the glass, we force one of the nodes to occur
close to (but not precisely at) the point of contact. When
we remove our finger, the nodes may be free to rotate (if
the glass has nearly perfect symmetry) or they may be
pinned at one location by small imperfections in the glass.
We have already answered Question 2—they are not
sound waves but flexural waves.

With respect to Question 6, Rayleigh cites the work of
Fenkner (1879), who found the vibrational frequencies of
a thin-walled cylinder to be inversely proportional to the
square of the radius and very nearly independent of the
height. Why the square of the radius? Because the speed
of flexural waves is proportional to ,/f. Thus, if the time
for a wave to travel the circumference is taken to be its
period, we can say that

Vf = 22 @
kyf
from which f « 1/7°.

What about higher modes of vibration in the glass? The
next mode will nearly always be the (3,0) mode for which
27r = 3. Since the wave velocity is proportional to /7,
the frequencies of the (r1,0) modes are nearly proportional
to n12, so the (3,0) mode frequency is approximately %4
times that of the (2,0) mode. Many modes can be identi-
fied in large bells. My colleagues in Loughborough, En-
gland have 1dcnt1ﬁcd 134 modes of vibration in an English
church bell.’ Higher modes of vibration can be excited in
a wine glass by striking it or by applying a sinusoidal force
by means of a small magnet and coil or by placing it in front
of a loudspeaker. I have not been able to excite higher
modes by rubbing the edge with my finger; has anyone
done this?

Standing waves in a wine glass have been likened to
waves in the Bohr model of the atom.!® It is true that
27r = mA in both cases (not A as stated in Ref. 10), but here
the analogy ends In the Bohr atom, the orbital radius
increases with m?, but in the wine glass it remains constant.
Thus the dlspcrsmn relationships are quite different. The
atomic analog of the wine glass might rather be an electron
whirling about the nucleus on the end of a string.

Now that we understand something about the physics
of wine glasses, perhaps we should consider making some
serious music. If we carefully select a set of glasses, we
should be able to play tunes on them. Right? Indeed we
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